T
CS ating Systems
An Introduction to Operating Systems

* Objectives

— List and characterize operating systems services (User interface, program
— P execution, 10, file system manipulation, communications, error detection,

resource allocation, accounting, protection and security)
Compare and contrast approaches to command interpreter implementation

Compare and contrast the command interpreter and graphical user
interface approaches to interface with the computer.

9— List various UNIX shel|g S e ————————
— Explain how a system call is made j o—
— Explain the concept of a system call

Explain the usage of the malloc and free operations within the C
programming language.

Construct simple C programs which use malloc and free to solve problems.

— ImplementScreen and File 1/Oin C, showing how the system calls are
invoked ———

Describe various methods for handling parameters as they are passed to

"—v System calls.

Operating Systems, Copyright 2009-2011

—F

Review

* What are the two view of an operating

system?gjj '/(,/n V/'C[(/

* What are two modes within an
operating system and why do we have

them?

k&rm’// MI/C"/
U5&r" ﬂ%,/g

e Kernel Mode

— Also referred to as supervisor_mode,
--_—______,_——_t

system mode, or privileged mode
—_— e ———

— Protects the operating system from
errant users

— Typically used for Device driver code,
timers, interrupts, etc.

e User mode

— General mode in which the system
operates

— Trying to execute a privileged instruction

will cause an exception handler to
execute %E

nnnnnnnn

Operating Systems, Copyright 2009-20

Dual Mode Operation

Transitioning Between

l}bﬁ:dj Somy 4, :,7,

user proce
user mode
user process executing 4>‘_calls system call return from system call ‘ (mode bit = 1)
1‘
return
mnde o= 1
kernel mode
(mode bit = 0)

rap
i) ITIDdE bll
execute system cal

'ICh/rp‘z:[_’L)

ORerating Systems Services

' /74 [eve/

user and other system programs

GUI batch command line
user interfaces < I
system calls
—
IOLKE /O file communication o primet accountin
execution operations systems allocation g
error pm;?‘r;tmn
detection .
I
— security
operating system

6/04‘//1 t Thyce
5641 A

C.

Prating Sgstems, Copyright 2009-2011
y/ 2

/e

e £ &

Two models for Command

Q
X
J

<

reters

Q‘ Interp
Uy

Command Interpreter integrated into
the Kernel —

BV?/'(154 picla
ommarld été/ré)f"étéﬁ?f sffmep(y

another running process

C. guumi /"l//d[7 4

An e:rze ﬁrdéf”’{{;;

Whic r modeél is used, main
purpose is to interpret the user

supplied command!

Two models for command

* Monolithiccommand interpreter

— Single large program contains the code to
execute the command

* Independent system programs

— Command interpreter simply knows how

to search for the right program

interpreter design

Bovrn SA- :53

o jodap; G

w

S|19YS z:@@

......u.&\\a\\w \“ﬁ\uw\mt_ﬁm

Unix Shells

Bourne Shell (1977) -sh =

— Unix Version 7 shell

C shell (1978) csh =—

— BSD Unix shell

— Offered history, aliases, etc.

Korn Shell (1983) - ksh —
— AT&T Bell Labs Development

— Allows user to edit command entries in WSWIG

Fashion

Bourne Again Shell (1989) - bash

— “Bourne Again Shell”
— Superset of the Bourne Shell _—
— Includes ideas from CSH and KSh

————————————————

nnnnnnn

Operating Systems, Copyright 2009-20

_#—-

U]

WfAﬂMé/l

Process

f%) j] Control

System Calls

File

Manipulatinn

Device
Manipulatinn

Information
Maintenance

Communication

Protection

Winglows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()

write() o=
close()

ioctl()
read()

Write() g

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()

#include <stdio.h>
O U int main ()
S\ {

TN\ .

CU\‘ printf ("Greetings"); |«

o6 Prai(

. ,¢, . .

O . l -
) return O: ﬂ ltﬁﬂj)
g }

+ us [/J’U‘ﬂ’

o mIp X .

o]0)

E rite () >

)

g write ()
o system call

APl — System Call — OS Relationship

¢ Mt he)
-~

user
mode

system call interface
kernel

mode A
> | - open ()
Implementation
i » of open ()
system call

return

* Lets write a program to read a file and
print it to the screen.

Lets write a ¢ program to
do this...

Lets write a c program to

do this...

#include <stdio.h>
int main(int argc, char *argv(])
{
FILE* fptr;
fptr = fopen(argv[1], "r");
while (!feof(fptr))
{
unsigned char text[255];
fscanf(fptr, "%s", text);
printf("%s\n", text);
}
fclose(fptr);

}

nnnnnnnn

Malloc and Free in C

e Malloc

— Allocates a region in memory of a given

size ﬂ/yéz_ I.F A fr;éé/r) ocCcors,
@rns a void pointer
— void* mall ize t f
void* malloc (size t size) 6,' Zeo 1(*
* Free bl o /& i1

— Deallocates a region of memory éyf -4
previously allocated by malloc

— Must only be called once for a given
region

— void free(void *ptr)

Uil

Operating Systems, Copyright 2009-2011

* Lets write a program to read a text file
in and print it back out to the console

— File to be read in and stored as an array
of ¢ strings

— Each word to be stored as a separate
entry.

Example

nnnnnnnn

* Often, more information is required than simply
identity of desired system call

— Exact type and amount of information vary according
to OS and call

* Three general methods used to pass parameters
to the OS

— Simplest: pass the parameters in registers
* |n some cases, maybe more parameters than registers

— Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register
* This approach taken by Linux and Solaris
— Parameters placed, or pushed, onto the stack by the

program and popped off the stack by the operating
system

— Block and stack methods do not limit the numbegg
length of parameters being passed

Handling Parameters

