OpenACC

Lecture Objectives:

1) Define the concept of gangs and workers as it is related to openAcc.
2) Draw an architecture of a system which uses OpenACC.

OpenACC

* An API consisting of compiler directives for

Accelerators.
P ——

* Specifies loops and parallel regions that can
be sent to attached accelerators (notably
GPUs)

* |nitially developed by Portland Group (PGl)
and NVIDIA with support from CAPS
enterprise (http://www.caps-
entreprise.com/)

* Similar approach to OpenMP and present!
work on merging.OpenMP and OpenACC

These notes introduce OpenACC and are
derived from:

—ZBhapter 15 of Programming Massively
Parallel Processors by D. B. Kirk and W-M
W. Hwu, Morgan Kaufmann, 2013

and / Mék-’/
“The OpenACC™ Application

Programming Interface,” Version 1.0, Nov.
2011 T —

http://www.openacc.org/sites/default/fil

es/OpenACC.1.0 O.pdf

Sources

Parallel construct

* When program encounters an
accelerator parallel construct,
gangs of workers created to
execute accelerator parallel
region.

Workers
* Once gangs created, number of (vector

operations)

gangs and number of workers |
each gang remain constant for

duration of that parallel region. é

* One worker in each gang begins T h
executing the code in the
structured block of the construct.” / ‘F

* host program will wait untjl all h/
gangs have completed execution. /f s 5
ebd—
M

SE498 Parallel Computing

Copy processing data

Copy the result

GPU

(GeForce 8800)

CUDA Architecture \i

Processing flow
on CUDA

Instruct the processing

Execute parallel
in each caore

OpenACC Device Model

s AR TR TR TR s AR IR TR
FrTrrn 1T 1Tna
vector [I vector]] [l
L1 0Ll |
thread
| threa JJ:JJJJJJJJ
execution unit — execution unit

TS || O ARBRRR

FrTrTeyn
[I vectorn]] [I
LLLald

Lhread
JJJJJ S . w0)
execution unit expcution unit

accelerator

Open ACC Device Model

SE498 Parallel Computing

Example

)

OpenMP Example

/* matrix-omp.c */
#define SIZE 1000
float a[SIZE][SIZE];
float b[SIZE][SIZE];
float c[SIZE][SIZE];

int main()
int 1,3,k;

// Initialize matrices.
for (i = 9 i < SIZE; ++1) {

fur { = B] ¢ SIZE ++J} {
] Flnat i+ 3;
] = Flnat i-3;
] j] = 0.ef;

}

// Compute matrix multiplication.
#pragma omp parallel for default(none) shared(a,b,c) private(i,j,k)
for (1 = @; i < SIZE; ++i) {
for (j = @; j < SIZE; ++j) {
for (k = @; k ¢ SIZE; ++k) {
c[%][j] += a[i][k] * b[k][]];

}
}

return 0;

Simple Matrix-Matrix Multiplication in OpenACC

1 void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)

2 {
3

Lo

4 #pragma acc parallel loop copyin(M[0O:Mh*Mw]) copyin(N[O:Nw*Mw])

copyout(P[0O:Mh*Nw])

5 for (int i=0; i<Mh; i++) {

w #pragma acc loop

for (int j=0; j<Nw; j++) {

7

8

9
10
11
12
13
14
15
16 }
17}

}

float sum = 0;

for (int k=0; k<«Mw; k++) {
float a = M[iI*Mw+k];
float b = N[k*Nw+j];
sum += a*b;

}

P[i*Nw+j] = sum;

Some Observations

* The code is almostidentical to the

sequential version, except for the two lines
with #pragma at line 4 and line 6.

* OpenACC uses the compiler directi
mechanism to extend the base language.
— #pragma at line 4 tells the compiler to generate code for the ‘I’

loop at line 5 through 16 so that the loop iterations are executed in
parallel on the accelerator.

— The copyin clause and the copyout clause specify how the matrix
data should be transferred between the host and the accelerator.
The #pragma at line 6 instructs the compiler to map the inner '

~—A |oop to the second level of parallelism on the accelerator.

Data Clauses

Data clauses -- a comma-separated collection of
variable names, array names, or subarray
specifications. Compiler allocates and manage a copy
of variable or array in device memory, creating a
visible device copy of variable or array.

Data clauses:

— copy
— Copyin

———
[

— Copyout

S

— Create

— Present *~

— present_or_copy —

— present_or_copyin —
— present_or_copyout

— present_or_create —

SE498 Parallel Computing

Data Clauses

* copy(list)
— 0 — Allocatesthe data in list on the accelerator and copies the data
from the host to the acceleratorwhen entering the region, and

copies the datafrom the acceleratorto the host when exiting the
region.

« copyin(list) — //V74, L), /"n/:‘{

— Allocatesthe datain list on the accelerator and ies the data

from the host to the acceleratur%
» copyout(list) __ ,%// /}/\

— Allocatesthe datain list on the acceleratorand copies the data
from the acceleratorto the host when exiting the region.

* create(list) /()/L

— Allocatesthe data in list on the accelerator, but does not copy data
between the host and device.

SE498 Parallel Computing

« present(list)

— The data in list must be already present on the accelerator, from some
containing data region; that accelerator copy is found and used. -—

« present_or_copy(list)

— If the data in list is already present on the accelerator from some containing

Data Clauses

data region, that accelerator copy is used; if it is not present, this behaves
like the copy clause.

* present_or_copyin(list)

— If the data in list is already present on the accelerator from some containing
— data region, that accelerator copy is used; if it is not present, this behaves
like the copyin clause.

« present_or_copyout(list)

— If the data in list is already present on the accelerator from some containing
data region, that accelerator copy is used; if it is not present, this behaves
like the copyout clause.

*» present_or_create(list)

s If the data inlist is already present on the accelerator from some containing
data region, that accelerator copy is used; if it is not present, this behaves
like the create clause.

* deviceptr(list)

— Cand C++; the list entries must be pointer variables that contain device

addresses, such as from acc_malloc. —
SE498 Parallel Computing

Simple Matrix-Matrix Multiplication in OpenACC

again
1 void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2 {
3

4 #pragma acc parallel loop copyin(M[0O:Mh*Mw]) copyin(N[O:Nw*Mw])
copyout(P[O:Mh*Nw])

5 for (int i=0; i<Mh; i++) {
6 #pragma acc loop
7 for (int j=0; j<Nw; j++) {

8 float sum = 0;

9 for (int k=0; k<«Mw; k++) {
10 float a = M[I*Mw+k];
11 float b = N[k*Nw+j];
12 sum += a*b;

13 }

14 P[i*Nw+j] = sum;

15 }

16 }

17}

Gangs workers and vectors

OpenACC execution model has three
levels:

— 8ang
— worker
— Vector

An OpenACC gang is a threadblock
A worker is effectively a warp

An OpenACC vector is a form of CUDA
thread.

SE498 Parallel Computing

_wvocu_w_w_,.“:uwxm_
ﬁ*

el 32 /
{pragrﬂa acc parallel num_gangs(32) \

Statement 1; Statement 2;

«

#pragma acc loop g

for (int i=0; i<n; i++) {
Statement 3; Statemen

]
Statement 5; Statement 6;

#pragma acc loop gang

32 gangs

for (int i=0; i<m; i++)
Statement 7; Statement 8;
]

c'(,./l'l

ICJFJN,

rureting openACC code

Inte

SE498 Parallel Computing

 Statementsland 2 are
redundantly executed by

. mr-loop iterations

are distributed to 32 gangs

=2 alg - Dyt oy

Dine T

Example

In this example, number of gangs and workers 1n each gang specified
in clauses, otherwise decided by compiler.

#pragma acc parallel loop copyin(a, b), copyout (c),
num_gangs(1024) num_workers(32)

{ — T
‘ c=b +a;)One worker in each gang (gang leader) executes
statement, so this statement repeated by each gang

J leader, so this would not make much sense 1n itself

loop construct

#pragma acc loop [clause] ...
for loop

Loop directive 1s used within a parallel directive and the two can be

combined:
/

\

mearallehzed With no gang, worker or vector clauses,
implementation can automatically select whether to execute loop across
cgangs, workers within a gang, or whether to execute as vector operations.

#pragma acc parallel loop [clause] ...
for loop

Implementation may choose to use vector operations to execute any loop
with no loop directive, using classical automatic vectorization.”

Example
Matrix multiplication

void matrixMultACC(float *C, const float *A, const float *B, int N)

{
#pragma acc parallel loop copyin(A[0:N*N], B[0:N*N]) copyout (C[0:N*
for (intl=0; i <N; i++){ \

#pragma acc;?
for (intj=0; J<N; j++){ Subarray locations 0 to N*N - 1
float sum = 0;
for (intk =0; K < N; k++) {
sum += A[i*N + k] * B[kK*N +|];

}
C[i*N + j] = sum;

}

In this example left to CDmE!TEr to decide how to allow resources to parallelize loop

-—-.______--_
19

Question

r /a’ﬁf

In the following[how 1s the following executed?

#pragma ﬂmﬁgﬂrﬂllel num_gangs(1024)

{
for (int i = 0; 1 < 2048; 1) { {_ ﬁ / /
Plon [, V/
7

h

}))7 7

Each of the 1024 gang leaders will execute the same for loop ==
as a normal sequential for loop (redundantly)!!!

gang and worker clauses

In an accelerator parallel region:

gang clause specifies that the iterations of the associated loop
or loops are to be executed 1n parallel by distributing the
iterations among the gangs created by the parallel construct.
The loop iterations must be data independent, except for
variables specified in a reduction clause.

worker clause specifies that the iterations of the associated
loop or loops are to be executed 1n parallel by distributing the
iterations among the multiple workers within a single gang.
The loop 1terations must be data independent, except for
variables specified 1n a reduction clause.

gang Example

#pragma acc parallel num_gangs(1024)

d
pragma acc lﬂﬂp sang
for (int i = 0; i < 2048;i++) {
j

j

Now the 2048 iterations are shared among the gang leaders, 1.e. two
iterations each.

gang and worker Example

#pragma acc parallel num gangs(1024) num_workers(32)

d

pragma acc loop gang
for (inti=0;1<2048;1i+1) {
pragma acc loop worker
for (int j =05 j <5125 j++) {
foo(i,));

h

foo(1,)) will be executed 2048 x 512 times, distributed across 1024 x 32 workers.

Each gang will execute two iterations of the outer loop (2048/1024 = 2)

For each outer loop iteration, each worker in a gang will execute 16 iterations of the inner
loop (512/32=16)

This assume even distribution which the spec. does not actually say.

Code from page 323, Chapter 15 of Programming Massively Parallel ProcessorsbyD. B, Kuk and W-M W. Hwu, Morgan Kaufmann, 2013,

Question

#pragma acc parallel num_gangs(32)

{

Analyze the following EI“IE“‘E“: ;5
atement 2;

code and explain how #pragma acc loop gang

it gets executed. for (inti=0; i< n;it+) {
Statement 3;
Statement 4;

J

Statement 5;

Statement 6;

#pragma acc loop gang

for (inti=0;1<n;itt){
How could this be Statement 7;

written in CUDA? Statement 8;
}

Statement 9;
if (condition)
Statement 10;
h

Code from pagze 323, Chapter 15 of Programming Massively Parallel Processors by D, B, Kitk and W-M W. Hwu, Morzan Kaufmann, 2013,

vector clause

#pragma acc parallel num_ gangs(1024)

vector clause specifies that
num_workers(32) vector length(32)

loop 1terations are executed

in vector or SIMD mode. d
pragma acc loop gang

for (inti=0;1<2048;1++) {
pragma acc loop worker
for (int j =05 j <5125 j++) {
pragma acc loop

Using vectors of length
specified or chosen for
parallel region.

. ecton
Implementation-defined '

. for (intk=0; k <
whether a loop with {

512; k++) {

vector clause may Possibly mapping
contain a loop containing , Jang to CUDA block
s Worker to CUDA warp
gang or worker clause. } Vector element to thread
! within warp

Code from pagze 327, Chapter 15 of Programming Massively Parallel Processors by D, B. Ktk and W-MM W. Hwu, Morgan Kaufmann, 2013,

Kernel construct

#pragma acc kernels [clause] ...
structured block

Defines a region of the program that is to be compiled into a sequence of
kernels for execution on the accelerator device.

Compiler breaks code in the kernels region into a sequence of
accelerator kemnels.

Typically, each loop nest will be a distinct kernel.
When program encounters a kemels construct, 1t will launch sequence

of kemels 1n order on the device. Number and configuration of gangs
of workers and vector length may be different for each kemel.

Example

Each kernel can have different

#pragma acc kernels -
/ gang number/size

d
#pragma acc loop num_gangs(1024)

for (inti=0;1i<2048;i++) { \ The loop construct says share
a[i] = b[i]; loop iterations among gang
! leaders only

#pragma acc loop num_gangs(512)
for (int j = 0; j <2048; j++) {

cli] = alj]*2; As opposed to the parallel
} construct where gang leader
for (int k =0; k <2048; k++) { / redundantly execute this loop,
d[Kk] = c[K]; here a single for loop executed

as a kernel with 2048 iterations

h

Code from pagze 328, Chapter 15 of Programming Massively Parallel Processors by D, B. Ktk and W-MM W. Hwu, Morgan Kaufmann, 2013,

Data Dependencies

void foo(int *X, int *y, int n, int m) {
int a[2048], b[2048];
#pragma acc kernels copy(x][0;2048], v[0:2048], a, b)

f

#pragma acc loop
for (inti=0;i<2047; it+) {
afi] =b[I + 1] + 1; No data dependence

}

#pragma acc loop
for (int j = 0; j <2047; j++) {

aljl =afj+1] + 1; Data dependence
b
#pragma acc loop
for (int k=0; k <2047; kt++) { B
x[k] =y[k+ 1] + 1; No data dependence 1f x[] not
) aliased with y[]

#pragma acc loop
for (intl=0;1<m; I+*) {
x[l] =y[l+n] +1; No data dependence ifn >=m
)
! 28

Code from page 330, Chapter 15 of Programming Massively Parallel Processors by D, B. Kk and W-MM W. Hwu, Morgan Kaufmann, 2013,

Example - COnvolution

volid convolution SM NitypeToUse A[M] [HN], typeTocUse E[M] [H])

{

int i, j, k-

int m=H, n=H;

S/ OpenACC kernel region

// Define a region of the program to be compiled into a sedquence of
// kernels for execution on the accelerator device

fpragma acc kernels pcopyvin(i[0:m]) pcopy(B[0:m])

{
typeTolUse cll, cl2, cl3, c2l, c22, c23, c3l, c32, c33;
cll = +2.0f; c21 = +5.0f; 31 = -8.0f;
cld = -3.0f; c22 = +6.0f; c32 = -5.0f;

cld = +4,0f; c23 = +7.0f; c33 = +10.0f;
S/ The OpeniACC loop gang clause tells the compiler that the iterations
S/ of the loops are to be executed in parallel acrozs the gangs.
S/ The argument specifies how many gangs to use to execute the
J// iterations of this loop.
fpragma acc loop gang(64)
for (imt 1 = 1; 1 <« M - 1; ++1)
{
/S The OpenACC loop worker clause zspecifiez that the iteration
/S of the associated loop are to be
/{ executed in parallel across the workers within the gangs created.
S The argument specifies how many workers to use to execute the
S/ iterations of this loop.
fpragma acc loop worker (123)
for (int j = 1; jJ < N - 1; ++3)

{
BIi][i] = cll * A[i - 1][j - 1] + cl2 * A[i + OJ[F - 1] + 13 * A[i + 1][§ - 1]
+ €21 * A[i - 1[5 + 0] + €22 * A[i + OJ[j + 0] + 23 * A[i + 1][j + O]
+ €31 * A[i - 1][7 + 1] + 32 * A[i + OJ[§ + 1] + ©33 * A[i + 1][F + 1]:

3

3
} //kernels region

SE498 Parallel Computing

In Class activity

* Lets convert our image convolution to
use openAcc and see if it works better.

SE498 Parallel Computing

* OpenACC programmers can often start
with writing a sequential version and
then annotate their sequential program
with OpenACC directives.

— leave most of the details in generating a
kernel and data transfers to the OpenACC
compiler.

* OpenACC code can be compiled by non-

OpenACC compilers by ignoring the

pragmas.

Advantages of OpenACC

SE498 Parallel Computing

Problems with OpenACC

The main trouble with OpenACC is data
movement

— Data movement takes up a good deal of the
execution time and should be considered when
deciding if OpenACCis the correct route to go.

Some OpenACC pragmas are hints to the
OpenACC compiler, which may or may not be
able to act accordingly

— The performance of an OpenACC depends heavily
on the quality of the compiler.

— Much less so in CUDA or OpenCL

Some OpenACC programs may behave
differently or even incorrectly if pragmas are

ignored
SE498 Parallel Computing

