Cache Coherence

Lecture Objectives:

1) Explain the difference between write back and write

—————————- ——
through caching
..F
2) Explain the difference between write allocate and no-
| m—— —

write allocate

3) Explain the problem of cache coherence
4) Explain how cache coherence can be dealt with

_"-.

5) Explain snooping based cache coherence
6) Explainéalse shar|n§ - _;,.,..,,)

The Memory Hierarchy

Processor SUPER FAST

SUPER EXPENSIVE
TINY CAPACITY

FASTER
EXPENSIVE
SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAN RD-RAM PHYSICAL MEMORY
and More... ¥ (RAM)
f SOLIDSTATEMEMORY Y AVERAGE SPEED
SESHEISS SN // PRICED REASONABLY
4 NON-VOLATILE FLASH-BASED MEMORY ,‘ AVERAGE CAPACITY
i N
Mechanical Hard Drives VIRTUAL MEMORY \ EiLET:
fr’f . LARGE CAPACTITY

4 A

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

*http:/www. bit-tech net’hardware/ntemery 20671 105/ theise crets of pc memory part 1/3

* Write Through Cache L-gc(/ﬂ f/*/a:«q_,

— Writing is done simultaneously to both the
cache and the backing store

* Write back (write behind)

— Initially, writing is done only to the cache.
The write to the backing store is
postponed until the blocks are to be
replaced by new content

— Generally used to improve performance

Writing Policies

SE498 Parallel Computing

;
(

What if a memory location

Is not loaded into cache?

Write allocate (aka Fetch on write) -
Datum at the missed-write location is
loaded to cache, followed by a write-hit
operation. In this approach, write
misses are similar to read-misses.

No-write allocate (aka Write-no-
allocate, Write around) - Datum at the
missed-write location is not loaded to
cache, and is written directly to the
backing store. In this approach, only
system reads are being cached.

SE498 Parallel Computing

(erpadiyipn)
mtmcugo_u_ w_._umu w”__._>>

Core 0 Core 1

Q Cache 0 Cache 1
L

Vs

-

Vy
Y

a Interconnect

(O I

X

L X 2 y1

Q

-
@ y0 z1

SE498 Parallel Computing

Write Invalidate

* processor obtains exclusive access for writes
(becomes the “owner”) by invalidating data in
other processors’ caches coherency miss
(invalidation miss) cache-to-cache transfers

* good for:

— multiple writes to same word or block by one
processor

— migratory sharing from processor to processor
— a problem is false sharing

— processors read & write to different words in a
shared cache block

— cache coherency is maintained on a cache block
basis

— block ownership bounces between processor

caches
SE498 Parallel Computing

Write Update

* broadcast each write to actively shared
data

* each processor with a copy snarfs the
data

* good for inter-processor contention

SE498 Parallel Computing

Snooping Implementation

A distributed coherency protocol
« coherency state associated with each cache block

« each snoop maintains coherency for its own cache

How the bus is used
« broadcast medium

« entire coherency operation is atomic wrt other processors
. - master holds the bus until the entire
operation has completed

« request & response are different phases

« state value that indicates that an operation is in progress

« do not initiate another operation for a cache block that has
one in progress

T F Y11 0T 14 e I by
Spring 200 _USE P5348

Snooping Implementation

Snoop implementation:
« separate tags & state for snoop lookups
« processor & snoop communicate for a state or tag change
« snoop on the highest level cache
« anotherreason it is a physically-accessed cache
« property of inclusion:
« all blocksin L1 arein L2
« therefore only have to snoop on L2
« may need to update L1 state if change L2 state

Spring 2003 CSE P348

A Low-end MP

Processor Processor
One or One or
more levels more levels
of cache of cache

Main memory

Spring 2003

Processor Processor
One or One or
more levels more levels
of cache of cache

[/0 System

CSE P548

Vi
o

State Machine (CPU side)

CPU read hit

CPU read miss Shared

Invalid
Place read op \ (reéad/only) | \ cpU read miss
on bus Place read op
on bus
_ CPU read mis
CPU er_te Write back bio
Place write |
op on bus Place read op on bus
CPU write
Place write op on bus
CPU read (hit

Exclusive

(read/write) CPU write miss

Write back cache block

CPU write Place write op on bus
Spring :'!"!'jl"t CSE P548 12 %

State Machine (Bus side)

Write miss

for this block Shared

(read/only)

Write miss for this
block

Write back the block Read miss for this block

Write back the block

Exclusive
(read/write)

Spring 2003 CSE P548

Directory Implementation

Distributed memory
« each processor (or cluster of processors) has its own memory

« processor-memory pairs are connected via a multi-path
interconnection network

« snooping with broadcasting is wasteful
+ point-to-pointcommunication instead

« a processor has fast access to its local memory & slower access to
‘remote” memory located at other processors

« NUMA (non-uniformmemory access) machines

How cache coherency is handled
* no caches (Tera (Cray) MTA)
« disallow caching of shared data (Cray 3TD)
« hardware directories that record cache block state

Spring 2003 CSE P348 14

A High-end MP

Proc| $ Proc| § Proc| $
Mem Mem Mem
Dir Dir Dir
Mem Mem Mem
Dir Dir Dir
Proc| $ Proc | $ Proc| $

Spring 2003 CSE P548

Directory Implementation

Coherency state is associated with memory blocks that are the size of
cache blocks

« cache state

« shared:

« at least 1 processor has the data cached & memory is up-
to-date

« block can be read by any processor
« exclusive:

« 1 processor (the owner) has the data cached & memory is
stale

« only that processor can write to it
* invalid:
* Nno processor has the data cached & memory is up-to-date
« which processors have read/write access
« bit vector in which 1 means the processor has the data
« optimization: space for 4 processors & trap for more
« write bit

Spring 2003 CSE P5458 16

Directory Implementation

Directories have different meanings (& therefore uses) to different
processors

« home node: where the memory location of an address resides (and
cached data may be there too) (static)

- local node: where the request initiated (relative)

+ remote node: alternate location for the data if this processor has
requested it (dynamic)

In satisfying a memory request:

« messages sent between the different nodes in point-to-point
communication

« messages get explicit replies

Some simplifying assumptions for using the protocol
« processor blocks untilthe access is complete
*« messages processed in the order received

Spring 2003 CSE P5458 17

Read Miss for an Uncached Block

P2 $ P3 $
2: data value reply Mem
1: read miss Mem

P1 $ P4 $

Spring 2003 CSE P548

Spring 2003

Read Miss for an Exclusive, Remote Block

P2

2: fetch
4: data value reply

P3

[1: read miss

Pl

$

CSE P548

Mem

3: data wnite-back

P4

Spring 2003

Write Miss for an Exclusive, Remote Block

P2

2: fetch & invalidate
4: data value reply

P3

'y

1: write miss

Pl

CSE P548

Mem

3: data wnite-back

P4

