

Parallel Hardware?

Lecture Objectives:

- Draw a picture of the on Neumann computer architecture
- Explain the concept of caching —
- 3) Define spatial locality and temporal locality
- List and define the categories of processing under Flynn's taxonomy

Principles

- Data and instructions are both stored in the main memory(stored program concept)
- The content of the memory is addressable by location (without regard to what is stored in that location)
- Instructions are executed sequentially unless the order is explicitly modified
- The basic architecture of the computer consists of:

How do we improve this

▲ Simplified Computer Memory Hierarchy Illustration: Ryan J. Leng

n the grocery store

- Tomatoes
- 2. Corn
- 3. Beans
- 4. Carrots
- 5. Bread
- 6. Peanut Butter
- 7. Cherry Jelly
- 8. Fresh Chicken Breas s
- 9. Rib Eye steaks 🖊
- 10. Spaghetti Sauce
- 11. Pasta Noodles
- 12. Milk
- 13. Yogurt
- 14. Mozzarella Cheese
- 15. Ice Cream
- 16. Cherry Lemon Sherbet

- Cherry Jelly
- 2. Corn
- 3. Ice Cream
- 4. Rib Eye Steaks
- Beans
- 6. Mozzarella Cheese
- Carrots
- 8. Bread
- 9. Fresh Chicken Breasts
- 10. Spaghetti Sauce
- 11. Milk
- Tomatoes
- 13. Peanut Butter
- 14. Yogurt
- 15. Pasta Noodles
- 16. Cherry Lemon Sherbet

Lets assume you coulc of time. change

	_			
1	Ior	ทวเ	$r \sim c$	20
Ι.	ıvı	ı ıa	\mathbf{L}	53

- 2. Corn
- 3. Beans
- Carrots
- 5. Bread
- 6. Peanut Butter
- 7. Cherry Jelly
- Fresh Chicken Breasts
- Rib Eye steaks
- 10. Spaghetti Sauce
- 11. Pasta Noodles
- 12. Milk
- 13. Yogurt
- 14. Mozzarella Cheese
- 15. Ice Cream
- Cherry Lemon Sherbet

obtain anything from th Lets assume you could aisles . aisle change

- Cherry Jelly
- 2. Corn
- Ice Cream
- 4. Rib Eye Steaks
- 5. Beans
- 6. Mozzarella Cheese
- 7. Carrots
- Bread
- 9. Fresh Chicken Breasts
- Spaghetti Sauce
- 11. Milk__
- 12. Tomatoes
- 13. Peanut Butter
- 14. Yogurt
- 15. Pasta Noodles
- 16. Cherry Lemon Sherbet

Temporal Locality

 The principle stating that if a data location is referenced then it will again be referenced soon.

Spatial Locality

 The locality principle stating that if a data location is referenced, data locations with nearby addresses will tend to be referenced soon.

ets assume now that you go faster?

- 1. Tomatoes
- 2. Corn
- 3. Beans
- 4. Carrots
- 5. Bread
- 6. Peanut Butter
- 7. Cherry Jelly
- 8. Fresh Chicken Breasts
- 9. Rib Eye steaks
- 10. Spaghetti Sauce
- Pasta Noodles
- 12. Milk
- 13. Yogurt
- 14. Mozzarella Cheese
- 15. Ice Cream
- 16. Cherry Lemon Sherbet

- Attempts to improve processor performance by having multiple processor components (or functional units) simultaneously executing instructions
 - Pipelining

Multiple issue

 Lets assume we are sending out a mass mailing by US Postal service and we have multiple people helping. How could we organize the process?

- Steps

Overlap Tasks: 3 loads of laundry = 4 1/4 hrs

- Replicate functional units and attempt to execute different instructions in a program in tandem
- Example

 for (int index = 0; index < 1000; index++)

 {

 sum[index] = x[index]+y[index];

 for (index+1) = x(index)+y[index];

- Replicate functional units and attempt to execute different instructions in a program in tandem
- Example

```
for (int index = 0; index < 1000; index+=2)
{
  sum[index] = x[index]+y[index];
  sum[index+1] = x[index+1]+y[index+1];
}</pre>
```


 static multiple issue - functional units are scheduled at compile time.

 dynamic multiple issue – functional units are scheduled at run-time.

Static

 Multiple issue functional units are scheduled at compile time by the compiler

Dynamic

 Multiple issue functional units are scheduled at run-time

SISD

 Single Instruction, Single Data. This is the traditional single processor computer.

SIMD

Single Instruction, Multiple Data. This scheme, where a single instruction stream is executed by multiple ALUs

MISD

Multiple Instruction, Single Data.

MIMD

 Multiple Instruction, Multiple Data. This is currently The most popular hardware design for parallel processors.

SISD

 Single Instruction, Single Data. This is the traditional single processor computer.

SIMD

Single Instruction, Multiple Data. This scheme, where a single instruction stream is executed by multiple ALUs

MISD

Multiple Instruction, Single Data.

MIMD

 Multiple Instruction, Multiple Data. This is currently The most popular hardware design for parallel processors.

structure

*http://www.anandtech.com/show/6017/intel-announts xeon-phi-family-of-coprocessors-mic-goes-retail

