1)
2)
3)
4)

Lecture Objectives:

Explain the difference between OpenMP and pthreads
Compile and link a simple OEenIVIP Program
Explain the usage of the #pragma omp directive.

Explain the appropriate mechanism to check whether the
compiler supports openMP

Lab Discussion: What did

we find?

[0 mint e

/l nj (’/w?é .

IS 7e,Cr—

5'| X 500 0 0060
5100 XS50p0

6’01& 0 0 od Q 9

SE498 Parallel Computing

e General Thread mechanism

— Designed really before multicore
Processors were common

— Tends to try and keep all threads of the
same process on the same processor

w
g « Why? =) B,.[-h.f M(Lm «([c5$
Q — Work great for systemg 1ﬁwﬁel'”elt{h{::re s a lot
. - .
— of autonomy in the threads
"5_ * Web server

* Ul

* Etc.

* Notideal for multicore

— Why
SE498 Parallel Computing %

* What does OpenMP stands for?

* Open specifications for Multi Processing via
collaborative work between interested parties from

the hardware and software industry, government and
academia.

* OpenMP is an Application Program Interface (API)
that may be used to explicitly direct multi-threaded,

shared memory parallelism. (. /AL
* APl components — F, /-//4,,7

V33 Compiler Directives, Runtime Library Routines. Environment

--4 Variables :#- & 70978 C;Lﬂ/}g;
1he P /o invoRe

_C' * OpenMP is a directive- b L
Bw{arallel computatlons
multiprocessors
454 17,5 A{/—E
Puﬂll

atis OpenMP

* OpenMP APl is specified for C/C++ and
Fortran.

* OpenMP s not intrusivgy to the original serial
code:

— instructions appear i@mentstatemeysfor
fortran and pragmas for C/C++.

penMP website: http://www.openmp.orsf—

— Materials in this lecture are taken from various
OpenMP tutorials in the website and other places.

hy OpenMP?

#fﬁ/fnq
S J

CIC++ 1.0 CiC++ 2.0 OnenMB °
Fortran 1.0 Fortran 1.1 Fortran 2.0 pEnmE .

1997 1998 1999 2000 2001

o,

2002 2003 2004 2005 2006 2007 2008 2009 Eﬂ[ﬁ 2011~

Why OpenMP?

OpenMP is portable: supported by HP, IBM, Intel, SGI,
SUN, and others - —

— Itis the de facto standard for writing shared memory
PrOSram S ——

— To become an ANSI standard? =&
* Already supported by gcc (version 4.2 and up)

OpenMP can be implemeénted incrementally, one
function or even one loop at a time.

— Very nice way to get a parallel program from a sequential
program.

fo SCC 4.2 and above supports OpenMP 3.0
I_é

| gcc—fopenmra.c |
L‘? 77 €S /A 7/4L

a '
 To run: ‘a.out’ /(,7 ”7/ /f/”/‘ﬁ

— To change the number of threads:
* setenv OMP_NUM_THREADS 4 (tcsh)
* export OMP_NUM_THREADS=4(bash)

b
N

?

How to compile and rune
OpenMP programs

AN
.

* Designed for multi-processor/core,
shared memory machines.

] /{(J/C;'

éélfﬂ' j lV.v,» /é{ //

Bus Interconnect

OpenMP

Uniform Memory Access Non-Uniform Memory Access

SE498 Parallel Computing

/7

(om ac
Ope?!\/l Dro amw"
547“# -

d

e

master
thread

/

‘M

9
”‘I % parallel region)

{ parallel region

* OpenMP uses the fork-join model of parallel

. S
execution.

— All OpenMP programs begin with a single master thread.

— The master thread executes sequentially until a parallel region is
encountered, when it creates a team of parallel threads (FORK).

— When the team threads complete the parallel region, they
synchronize and terminate, leaving only the master thread that

executes sequentially (JOIN).

Definitions

Team —

— A set of threads executing a program

- 'L
Masterj— Fustdae Pueas”

— The original thread which is running and
spawns other threads

Slave —

— A thread spawned by a master thread to
solve a parallel segment of code e

“
Implicit barrier = B/QC/€5
— A synchronization Tonstruct which ensures

that the program does not continue until
all slave threads have completed.

SE498 Parallel Computing

Faim

/D)y Cro //6 ‘(34(/
WVew 9; 11 bpeamip

A first o en__MgFJZro

openMPDemol.c Eﬂ]
1 #include <stdlib.h>
#include <stdio.h>
J#ifdef _OPENM

4 E#include <omp.h>
5 ~#endif [/) %
; o / J”
7 // This function will say hello twice (in hgongor of the Beetles). (-/
3 void sayHelloHello() 4/ ,i"/’ Cr
9 H{ "' -
*_;.' #ifdef _OPENMP [Jf /"’f
138 | int my rank = omp get thread num(); // Get the slave threads rank amongst all threads.
12 é int EH!EEH:EGunt = omp get num threads(); // Determine how many slave threads there are.
13 E #else
14 E int my rank = 0; // If OpenMP is not supported, assume 1 thread.
IS | int thread count = 1;
16 [#endif
ST | // Say hello.
18 printf("Hello from parallel thread %d of %d.\n", my rank, thread count):
19 | printf("Hello again from parallel thread %d of %d.\n", my rank, thread count);
20 }
21
—

SE498 Parallel Computing

J A first openMP Program {

// The following code will say hello from each OpenMP thream}the system.

23 int main(int argc, char*argv[])™

24 B{

25 int index; '—

26 | I h/ll/ //
277 int threadCount = 1;

3 [P— o<

30 { ’(" P 4

threadCount = strtol {arqv[,/,

F Aya
um threads (threadCoun]I—- 44(

Z, #/’H}M#J In{/ﬂu Yton

The (om 1 ler.
P Commank £ /l,0r5.

.
29 i
o
2

#fpragma omp paMfllel

Open MP serial and parallel code

 Parallel directive

— The structured block which follows the

directive is to execute in parallel
S~

— The structured block may be a single
statement, a set of bracketed code, or any

other block of code

— The block will execute on each parallel
thread

SE498 Parallel Computing

=]

[T T T T T N LT T L o e e e e
W 00 =] h LN o) RO O WD @ =] LN WO WO m

* Here’s an example with a loop

// The following code will print out the numbers between 0 and 10 and the squares of
// those numbers before exiting.
// It will use openMP to do this in parallel.

int main({int argc, char*argv[])

0 Vo
int index; D
int threadCount = 1;

if (argc ==1)
= {

// Get the number of threads from the command line.
threadCount = strtol(argv[l!], NULL, 17);

}
#épragma omp parallel num threads (threadCount) JL—

for (index = 0; index < 10; index++) \/’
{ 2 2_

// Only call the API if the system is using OPENMP.
#1fdef OPENMP
int my rank = omp get thread num();

#else -
int my rank = 0; «
#endlf .

, index, (index*index), my rank);

IV |0

printf ("Number: %d\tSqrt: %Lf Calculated by thread %d.\n

SE498 Parallel Computing

E:' e
::
i
i
].
1':'
m
p
1
h.tl.
-

J
O
}
E
|
e
J
e
d
S
NS
J
3
A
E
|
e
J
e
d

Data model

« Private and shared variables

c *Variables 1n the global data space
R are accessed by all parallel threads
5] b-f] b (shared variables).
' J Variables 1n a thread’s private

space can only be accessed by the
thread (private variables)

P = private data space
5 = global data space

*® several variations, depending on the
mitial values and whether the results are

copied outside the region.

#pragma omp parallel for private(privindx, privDbl)

for (i =0;i < arraySize; i++) {

}

for (privindx = 0; privindx < 16; privindx++) {
privDbl = ((double) privindx) / 16;

y[i] = sin(exp(cos(- exp(sin(x[i]))))) + cos(
privDbl);

g
-
hI-

--w privindx

privDbl

--=priviodx

privDbl

--=priviondx

praivDbl

execulion context for "arrayUpdate_II"

- — -

1
privIindx

praivDbl

Parallel for loop index 1s
Private by default.

* When can we mark a loop a parallel loop?

— How should we declare variables shared or
private?

for (1=0; 1 <arraySize; i1++) {
for (privindx = O; privindx < 16; privindx++) {
privDbl = ((double) privindx) / 16;
y[i] = sin(exp(cos(- exp(sin(x[i]))))) + cos(privDbl);
}
}

Parallel loop: executing each iteration concurrently 1s the same
as executing each iteration sequentially.
* no loop carry dependencies: an iteration does not produce
any data that will be consumed by another iteration.
* y[1] 1s different for each 1teration. privDbl 1s not (must

make 1t private to be correct). .

OpenMP directives

* Format:
#pragma omp directive-name [clause,..] newline
(use \’ for multiple lines)

* Example:

#pragma omp parallel default(shared)
private(beta,pi)

» Scope of a directive is a block of statements {

e}

Parallel region construct

* Ablock of code that will be executed by multiple threads.
#pragma omp parallel [clause ...]

} (implied barrier)

Example clauses. iIf (expression), private (list), shared (/ist),
default (shared | none), reduction (operator: list),
firstprivate (Iist), lastprivate (1st)

— if (expression): only in parallel if expression evaluates to true

— private(list): everything private and local (no relation with
variables outside the block).

— shared(list): data accessed by all threads
— default (none|shared)

* The reduction clause:

Sum = 0.0;
#pragma parallel default(none) shared (n, x) private (1) reduction(+ : sum)

{

For(I=0; I<n; 1++) sum =sum + x(1);

}

— Updating sum must avoid racing condition

— With the reduction clause, OpenMP generates code such that the
race condition is avoided.

— See example3.cand example3a.c

* H#pragma omp for [clause ...]
* H#pragma omp section [clause ...]

* H#pragma omp single [clause ...]

* The work is distributed over the threads
* Must be enclosed in parallel region

No implied barrier on entry, implied barrier
on exit (unless specified otherwise)

Work-sharing constructs

The omp for directive: example

#pragma omp parallel default (none))\
shared(n,a,b,c,d) private(1i)

{

#pragma omp for nowait

for (1=0; 1<n-1; 1++)
b[i] = (a[i] + a[i+l])/2;

#pragma omp for nowait

for (1i=0; i<n; i++)
d[i] = 1.0/c[i];

} /*-- End of parallel region --%*/
(implied barrier)

* Schedule clause (decide how the iterations

are executed in parallel):
schedule (static | dynamic | guided [, chunk])

500 iterations on 4 threads

. ORI
, —guided, > WO 1]
1 iy m mii
* (AN

o - A
‘ZIIIIIIIIIIIIIIIIIIIIIIIII
SeoRHEE HE R PR g
s H+H+H+H—+rH+

=3 — dynamic, 5 LA RECALD
2 CCCOEEEARCTARCAROEIOIY
1 (N TEE AR :
static

Iteration Number @

The omp session clause - example

#pragma omp parallel default (none)\
shared(n,a,b,c,d) private (i)

{

#pragma omp sections nowait

{

#pragma omp section

for (1=0; 1<n-1; 1i++)
b[i] = (a[i] + a[i+l]1)/2;

#pragma omp section
for (1=0; i<n; 1i++)
d[i] = 1.0/c[1i];

} /*-- End of sections --*/

} /*-- End of parallel region --*/

#pragma omp parallel * #pragma omp parallel for
#pragma omp for £
or (....)

for (...)

Sinala PARAI |l Fl Innn

#pragma omp parallel _
#pragma omp sections #pragma omp parallel sections

{ ...} { ... }
Sinale PARALLEL sections

For(I=0; I<N; [++) | Both loops are in parallel region
a[I] = b[I] + c[1]; | With no synchronization 1n between.

What 1s the problem?

For(I=0; I<N; I++)
d1]=a[1] + b[1] |Fix [For(1=0; I<N; [++)

Synchronization: barrier

all] = b[I] + c[1];
#pragma omp barrier

For(I=0; I<N; I++)
d[I] = a[I] + b[I]

Critical session

For(I=0; I<N; I++) {

iiiiii

tttttt

Cannot be parallelized 1f sum 1s shared.

Fix:

For(I=0; I<N; I++) {

OpenMP environment

variables

« OMP_NUM THREADS
* OMP_SCHEDULE

OpenMP runtime

environment

omp get num_threads()
omp get thread num()

omp_in_parallel
Routines related to locks

Lock related routines

* Will only discuss simple lock: may not
be locked if already in a locked state.

* Simple lock interface:
— Type: omp_lock t
— Operations:
* omp_init_lock(omp_lock t *a)
* omp_destroy lock(omp lock t *a)
* omp_set lock(omp_lock t*a)
* omp_unset_lock(omp lock t*a)

* omp_test lock(omp_lock t*a)

Openmp lock routines

omp init lock initializes the lock. After the call,
the lock is unset.

omp_ destroy lock destroys the lock. The lock
must be unset before this call.

omp set lock attempts to set the lock. If the
lock is already set by another thread, it will wait
until the lock is no longer set, and then sets it.

omp unset lock unsets the lock. It should only
be called by the same thread that set the lock;
the consequences of doing otherwise are
undefined.

omp test lock attempts to set the lock. If the
lock is already set by another thread, it returns
0; if it managed to set the lock, it returns 1.

Openmp lock routines

* Canthe lock mechanism used for loop
carried dependence?

* See loopcarry omp.cand
loopcarry_ omp_ final.c

#pragma omp parallel default(none)shared (n, x) private (l) reduction(f:
sum)

{

For(I=0; I<n; 14++) sum = sum + x(I);

}

#pragma omp parallel default (none) shared(n, x, localsum, nthreads)
private(l)

{

nthreads = omp_get _num_threads();

tomized

reduction

#pragma omp for
for (1=0; I<n; I+4+) {
localsum[omp_get_thread _num()] += x(l);

}

1ZING CUS

For (1=0; I<nthreads; [++) sum += localsum[l];

Real

* Summary:

— OpenMP provides a compact, yet powerful
programming model for shared memory programming

— OpenMP preserves the sequential version of the
program

— Developing an OpenMP program:
* Start from a sequential program

* |dentify the code segment that takes most of the time.
* Determine whether the important loops can be parallelized

— The loops may have critical sections, reductionvariables, etc
* Determine the shared and private variables.
* Add directives.

* See for example pi.c and piomp.c program.

* Challenges in developing correct openMP
programs

— Dealing with loop carried dependence
— Removing unnecessary dependencies
— Managing shared and private variables

SE498 Parallel Computing

