Open MP

Lecture Objectives:

1) Explain the relationship between private and shared variables in
OpenMP.

2) Explain the concept of the OpenMP critical pragma lr—
3) Constructa segment of code using @perator and
OpenMP.

4) Explain the purpose for theclause in openMP_\;\

5) Implementasimple OpenMP algorithm for calculating a
mathematical value.

k\\/
R 5 ata
\L° Dt\mdé&ﬁ \,\mc\\

PARA
- il
Ah\" \Jb\)‘ ‘\t \AV' r \fﬁ @}ﬁ x'ared variables

1ables 1n the global data space
are accessed by all parallel threads
(shared variables).

IR ——— G
{ .

= P | [+ P ---E -~ P
' ' J * Variables 1n a thread’s private
space can only be accessed by the

thread (private variables)

I P = private data space
5 = global data space

*® several variations, depending on the
mitial values and whether the results are

copied outside the region.

#pragma omp parallel for private(privindx, privDbl)

for (1=0;1 < arraySize; i++) { \" “|‘¥ ll)

for (privindx = 0; privindx < 16; privindx++) {
privDbl = ((double) privindx) / 16;
y[i] = sin(exp(cos(- exp(sin(x[i]))))) + cos(

privDbl);
}
}
Parallel for loop index 1s
Private by default.
ittty p.4 Y —_—
LA | ¥ T
--w privindx = --= priviodx = --=priviodx = --=priviodx
privDbl privDbl praivDbl praivDbl
¥ ¥ ¥

execulion context for "arrayUpdate_II"

* When can we mark a loop a parallel loop?

— How should we declare variables shared or
private?

for (1=0; 1 <arraySize; i1++) {
for (privindx = O; privindx < 16; privindx++) {
privDbl = ((double) privindx) / 16;
y[i] = sin(exp(cos(- exp(sin(x[i]))))) + cos(privDbl);
}
}

Parallel loop: executing each iteration concurrently 1s the same
as executing each iteration sequentially.
<P no loop carry dependencies: an iteration does not produce
any data that will be consumed by another iteration.
* y[1] 1s different for each 1teration. privDbl 1s not (must

make 1t private to be correct). .

* Format: ! ,/l "‘mﬁl‘
#prggma omp dlrect*e name [clausSe,..] newline
(use \’ for multiple lines)

* Example:

#pragma omp parallel default(shared)

—= private(beta, pi) Ijrl/n?lf. VLY *“‘?

* Scope of a dlre ve is a block of statement

) o1 et
o

OpenMP directives

Parallel region construct

* Ablock of code that will be executed by multiple threads.
#pragma omp parallel [clause ...]

_l\ t\
chtxﬂ Nc

Example clauses. iIf (expression), private (list), shared ﬁ’fsﬂ
default (shared | none), reduction (operator: list),
firstprivate (Iist), lastprivate (1st)

— if (expression): only in parallel if expression evaluates to true

— private(list): everything private and local (no relation with
variables outside the block).

— shared(list): data accessed by all threads
— default (none|shared)

* The reduction clause:

sum = 0.0;
#pragma parallel default(none) shared (n, x) private (1) reduction(+ : sum)

{FDrI =0; l<n; |++) 5.1! = }‘H+Jﬁ|}

}

— Updating sum must avoid racing condition

— With the reduction clause, OpenMP generates code such that the
race condition is avoided.

— See example3.cand example3a.c

Work-sharing constructs

#tpragma omp for [clause ...]

' 7
Hpragma omp section [clause ...] e
#pragma omp single [clause ...] i"'...

The work is distributed over the threads
Must be enclosed in parallel region

No implied barrier on entry, implied barrier
on exit (unless specified otherwise)

The omp for directive: example

#pragma omp parallel default (none))\
shared(n,a,b,c,d) private(1i)

{
#pragma omp for nowai té—=

for (i=0; i<n-1; i++) — Di
b[i] = (a[i] + a[i+1l])/)2; {-
#pragma omp for nowai n‘

for (i=0; i<n; i++) H’Jr
d[i] = 1.0/c[i];

L -
} /*-- End of parallel region --%/ t:,#’fﬁf
(implied barrier)

* Schedule clause (decide how the iterations
re executed in parallel):

chedule static | dynamic | guided [, chunk])

500 iterations on 4 threads

""--.
quided, 5 N— I 1 110
\-,\ AN m il
—
§ A H

,h——-,‘.uzllllIIIIIIIIIIIIIIIIIIIII
~ gr-+HHHHH1H+HHHHHiHHHH
~ s'H+H+H+Ht+HrHHHHHH ki H

=3 — dynamic, 5
____2_____-—-'
1
o h J

..........

Iteration Nurnber \V
. _

The omp session clause - example

#pragma omp parallel default (none)\
shared(n,a,b,c,d) private (i)

{

#pragma omp sections nowait
{ — T — S

— #pragma omp section
for (1=0; i<n-1; 1i++)
b[i] = (a[i] + a[i+l]1)/2;

——-f_#pragma omp section
for (1=0; i<n; 1i++)
d[i] = 1.0/c[1i];

} /*-- End of sections --*/

} /*-- End of parallel region --*/

#pragma omp parallel * #pragma omp parallel for
#pragma omp for £
or (....)

for (...)

Sinala PARAI |l Fl Innn

#pragma omp parallel _
#pragma omp sections #pragma omp parallel sections

{ ...} { ... }
Sinale PARALLEL sections

Calculating e

* The constant e is base of the natural
logarithm. e is sometimes known as Napier's

constant, although its symbol (e) honors
Euler.

* eis the unigue number with the property

that the area of the region bounded by the
hyperbola y=1/x, the x-axis, and the vertical
lines x=1 and x=e is 1.

SE498 Parallel Computing

Calculating e

”

SE498 Parallel Computing

Algorithm

* What can be done in parallel?

* Each student to be assigned a factorial
to calculate and a division to make

— |’ll do the summation...

Lets calculate this out by hand

SE498 Parallel Computing

9

P

O

]
dN
u
9
d
O

:: e
i
i
].
1':'
m
p
1
I -

S

