Lecture Objectives:

1)

2)

_Cyclomatic Co@léxity

/}/J VAEN anl

Explain the different Ievels of testing and the number of test cases required to

meet the criteria.
/ f' —
Calculate the Cyclnmatlc com xlt\; for a source code module based on a
control flow graph. |
, Srap , e 5_1".-'1"'?.-'/"-«"" 7/-' /r'/ff‘a
Define the term basis path.
Construct test cases from the control flow graph which fully exercise the

software module. _

Crtigue-Central flow testing, listing its advantages and disadvantages versus
other testing techniques.

Visualize the relationship between cyclomatic complexity and the probability
of fault manifestation.

* Also referred to as basispath testing

* Usesthe topology of the control flow
graph to identify test cases

Ao

/
* Steps, f"/f
1. Derive the cgmtrpl flow grap

4al 1l [fm

2. Computtgrthe Cyclomgatig C Com’plemty of
the graph

3. Select a set of C basis paths

4. Create a test case for each basis path

Structured Testing

5. Execute these tests

.

Basic Path Set

* An execution path is.a set of nodes and
—aireeted edges in a flow graph that connects

(in a directed fe;s)ffgn-):tw;a'_rt node to a

terminal_rode.

e cution paths are said to be
independent—iftthey do not include the same
set of nodes and edges.

* A basic set of execution paths for a flow graph
IS an independent maximum set of paths in
which all nodes and edges of the graph are
included at least once.

""""" ware
Vertfication i

SE2832 Introduction to Soft

Cyclomatic Complexity

The_maximum size of a set of

independent paths is unique for a given
graph an |s¢:éalléq,;hje(c¥clomat|c

umbér. 2//‘/&/{; 7/

VG) e — n+2 h;«ﬁ'

Where v(G) denotes the cyclomatic
number of graph G, n is the number of
vertices in G, e is the number of edges.

Cyclomatic Complexity

Criterion

* Aset P of execution paths satisfies
cyclomatic number criterion it and only
—if P contains at least one set of v
~ independent paths,wWherev=e—n+2
is the cyclomaticnumber of the flow

s

/I/ﬂ/fs ‘:7 = G -NVN+2
gl[jff ; L

public static doub power (double number, nt] _
power) - y

| — v,

Eﬂﬁahle retVal = 0;
if (power > 0) l _
{ (1D
retval = numtﬁﬁn: “55‘1*
for (int count=1; count < power; couvnt +§) -~

,..-Lg
tVal *= nur r;
}

else if (power 0)
{ =

6;&6!&1 = (1.0 / number) ;

#HOr (int count=-1; count > ;

}

{

%
| retval F§ number;
= s (@/’5

else

{
retVal = 1.0;
}

return retVal;

}

'_-i "h-i

Vertfication

pubklic static int bkinary3earch(int key, int[] sequence) |
int bottom = 0;
int top = sequence. length - 1;
int mid = 0;

int kevPosition = -1;

while(bottom <= top && kevPosition == -1) {
mid = { top + bottom) [/ 2;
if{ sequence mid] = key) |
kevPosition = mid;
}
gelse |
if{ sequence| mid] < key) |
bottom = mid + 1;
}
else |

top = mid - 1;

}

return keyPosition;

Binary Search CFG

SE2832 Introduction to Software
Vertfication

pubklic static int bkinary3earch(int key, int[] sequence) |
int bottom = 0;
int top = sequence. length - 1;
int mid = 0;

int kevPosition = -1;

while(bottom <= top && kevPosition == -1) {

mid = { top + bottom) [/ 2;
if{ sequence mid] = key) |

kevPosition = mid;
}
gelse |

if{ sequence| mid] < key) |

bottom = mid + 1;

}

else [

top = mid - 1;

}

return keyPosition;

Binary Search CFG

SE2832 Introduction to Software
Vertfication

Creating Test Cases

Work out the number of distinct
paths.

— Cyclomatic Complexity

CC = noEdges —noNodes + 2
CC=13-10+2=5

List the distinct paths.

- 1,2,10

- 1,2,3,10

- 1,2,3,4,5,9, 2... (loop again?)

- 1,2,3,4,6,7,9, 2... (loop again?)

- 1,2,3,4,6,8,9, 2... (loop again?)
Figure out the conditions that
cause execution of these paths.

e

Vertfication

Your exercise

Draw a flow graph for this piece of source code
Determine the cyclomatic complexity of the code

String identifylnsect(boolean hasWings, int nolLegs) {
String insect = “Unknown”;
if (hasWings == true) {
if (noLegs == 6)
insect = “Fly”;
else if (noLegs == 4)
insect = “Grass Hopper”;
}else {
if (noLegs == 8)
insect = “Spider”;
else if (noLegs > 10 && nolegs < 200)
insect = “Millipede”;
}

return insect;

[S——

=T T)

E2832 Introduction to Software
Vertfication

Answer

T T)

E2832 Introduction to Software
Vertfication

CC =edges - nodes + 2
=17-12+2
=17

P rbbs Hy o fib,/\z,

Probability of Fault
Cyclomatic Co

\[;ersus

SE2832 Introduction to Software
Vertfication

Probability of Fault Versus
Cyclomatic Complexity

Prob(Fault Prone) for Cyclomatic

g 100
80
80
50
40
2 20
1 10 20 30 a0 50 b0 70 80 QO 100

11 30 74

A/
SE2832 Introduction to Software l“ h
Vertfication .

Cyclomatic Complexity and

Testabifity =

1-10 A Simple program without much risk
@D/ Qumplem moderate risk

21-50 Complex, High Risk

51+ Untestable, very high risk

SE2832 Introduction to Software
Vertfication

Issues with Cyclomatic

Complexity

* Are.all decisions equal?

— Case statement versus if statements?

— Nested logic versus mu}I’EEJIe conditions?
914/; F Z ‘
() ! -
Chse @ 1 L

C a4t é | Zé L'C
| 2/

(ﬁ;('/_1/

SE2832 Introduction to Software
Vertfication [

