SE3910- REAL TIME SYSTEMS
MISRA Coding Standards s

INDUCTION VARIANCE

o For(l=1;1<=10; i++)

. 2
v ,E\lﬁﬂ.]:[]J
o

SE3910 REAL TIME SYSTEMS

LOOP UNROLLING

* Duplicate instructions executed in a loop to reduce the number of operations and
hence the loop overhead incurred

alg) fﬂfﬁ)—yf/‘

For (I = 1; I<=;j++) _
{ —'125'—7"‘1/
aC Ve = all's. _ , .
| w MC@D - 9 @—}’@/ {

447
43= 4 (3 V¥,
L,

f" ,jé)/Fr/:/Maﬂ({ 5}5%(’%/@2

SE3910 REAL TIME SYSTEMS

7,6, //

LOOP JAMMING

+ Combine similar loops together to improve performance

For (I = 1; 1<=100;1++)

{ (]

X1 = y{ir's, o /) 7\5
J
For (I=1;1<=100; j++)

| O<n) - XO{I?)

Zl = X[yl

[W

SE3910 REAL TIME SYSTEMS o

+ Combine similar loops together to improve performance

For (I = 1; 1<=100;1++)

Al = y['8

zaj XC >+;CD

al
O
O
_

SE3910 REAL TIME SYSTEMS

X

ROADMAP

oday
* Embedded Code Quality and MISRA

lednestay—

+ Real Time Software Qualities

Friday

o Structured Design and Data Flow Diagrams

SE3910 REAL TIME SYSTEMS

OBJECTIVES

Understand the difference hetween static analysis and testing

_Define-the-hafting-probles—

Explain the difference between a false positive and a false negative

Construct a primitive static analysis tool using grep —

Describe the impact of using static analysis tools over time —

Compare and contrast style guides and programming standards —

am-the_stens-ecessarn—to-tiesrale

New-code —
~egacy-cote—

SE3910 REAL TIME SYSTEMS

s AL

E|Th

i
i
aq

INTRODUCTION

Static analysis is the process of evaluating a system or component based on its form,
structure, content, or documentation [IEEE]

* Does not involve the execution of the program ==

+ Software Inspections are a form of static analysis
C/ C7+

‘even well tested code written by experts contains a surpnsm g number of obvious
bugs™ [Hovermeyer/Pugh|

"Java has many language features and APIs which are prong to misuse.”
[Hovermeyer/Pugh] —

Static analysis tools “can serve an important role in raising the awareness of
developers about subtle correctness issues. . . . prevent future bugs”
[Hovermeyer/Pugh] -

E|Th

INTRODUCTION TO STATIC ANALY SIS [

40

STATICANALYSIS OVERVIEW

Similar to a spell checker or grammar checker. -

Search through code to detect bug patterns

————

« error prone coding practices that arise from the use of erroneous design patterns, misunderstanding of
language semantics, or simple and common mistakes.

otatic Analysis fools detect faults

« Not all faults will fail
%% of downime comes fom
10% of the faults

Can detect many different
classifications of software faults

+ Coding standards violations ==
+ Buffer overflows (Viega etal) -
+ decurty vulnerabilities (Lwshits and Lam) -
+ Memory leaks (Rai) -
Timing anomalies (race conditions, deadlocks, and livelocks) (Adho) ==
Th

INTRODUCTION TO STATIC 2N
ANALYSIS 5

_~All Faults /Faults which fail

* Required to claim compliance with MISRA C Standard

+ Between 40% and 60% of statically detectable faults wil
eventually manifest themselves in the field (QA Systems)

Has been shown to reduce software defects by a factor of six
(Xiao and Pham’

U+ Canremove upwards of 91% of errors (R. Glass)

ALY SIS OVERVIEW

[ave been shown to have a 92% RO 4,
NEW: Required by the state of New York for contracted S

STATIC

X T
"

INTRODUCTION TO STATIC ANALY SIS 9

STATIC ANALYSIS OVERVIEW

» Impossible to prove a software program correct in the
general case

» Manifestation of the Hal ting Problem>
(O E(//?C1l 1o A)((Fb’n(/ﬁlfl;j
< Most static analysis toW
Incomplete. |
e é&;,:/] ‘I‘/fﬁ
1 4/{7 s “yefern

INTRODUCTION TO STATIC ANALY SIS 10

STATIC ANALYSIS OVERVIEW

» Impossible to prove a software program correct in the
general case

» Manifestation of the Halting Problem.

False
/C; /"’5!‘/;/@
» Most static analysis tools are unsound and

K—’_B }:»1//:, /’)de/

(4)

INTRODUCTION TO STATIC ANALY SIS 10

STATIC ANALYSIS
CLASSIFICATIONS

General Purpose Tools

o (eneral purpose Static Analysis tools are those geared for general
developmental usage

* Lint, QAC, Polyspace C, JLint, Findbugs
Security Tools

o Static Analysis tools targeting security issues within source code
o RATS (Rought Auditing Tool for Security), SPLint, Flawfinder

Style Checking Tools

* Audit software code from a stylistic standpoint ensuring consistant
implementation style

o PMD, Checkstyle

Teaching Tools T
INTRODUCTION TO STATIC ANALY SIS (I
* Developed to help students develop better software .

IS CODE?

1: a_routine(uint32_t x, uint32_t oP

2

3 1

4

bB:)i "F
G

i

8: if (ok == 2)

o: {

10: printf({ "OK has a value of 2.\n");

printt orrect!i\n" J;

16 }

18: /* 1f (commented=TRUE) Even though thies code is commented out,
19 the error is still shown. */

[]-m

INTRODUCTION TO STATIC ANALY SIS 12 4

40

WHAT IS WRONG WITH T1I

1: void example_routine(uint32_t x, uint32_t ok, BOOL wrong)
2: {

3 it (x = 1)

4: {

B: printf("X has a value of 1.\n");

6: }

T

8: if (ok == 2)

9: {

10: printf({ "OK has a value of 2.\n");

11: ¥

12

13 if (wrong = FALSE)

14: {

15: printf("You are correct!\n");

16: ¥

17:

18: /* 1f (commented=TRUE) Even though thies code is commented out,

19: the error is =till shown. #*/

SIMPLE “HOME MADE” STATIC
ANALYSIS TOOL USING GREP

$ graep "if ([l:space:]l=*[[:alnum:]]=*[[:apace:]]*=[[:apace:]]+*
[([:alnum:]]" error_filea.c

INTRODUCTION TO STATIC ANALY SIS

ETh

i
i
aq

SIMPLE “HOME MADE” STATIC
ANALYSIS TOOL USING GREP

1: void example_routine(uint32_t x, uint32_t ok, BOOL wrong)
2: {

3 it (x = 1)

4 {

B: printf("X has a value of 1.\n");

6: }

T

8: if (ok == 2)

9: {

10: printf({ "OK has a value of 2.\n");

11: ¥

12

13 if (wrong = FALSE)

14: {

15: printf("You are correct!\n");

16: ¥

17:

18: /* 1f (commented=TRUE) Even though thies code is commented out,
19 the error is still shown. */

20: }

if (wrong = FALSE)

/* 1f (commenteds=TRUE) Even though thie code is commented out,

[wwa@localhost wwsl$

» One of the oldest and readily available static analysis
tools

* Developed initially by Bell Labs

o Clanguage —

LINT

o UNIX development
* Now available for Dos, Windows, Linux, OS/2

_—
» Commercial version available from Gimpel Software

» Supports value tracking, MISRA C standard compliance verification,
and Effective C++ Standards T

N AR EEET O MO TATRANALY SIS 15 "

SAMPLE BUFFER OVERFLOW

FAILURE SOURCE CODE (C

GUAGE)

L

typedef unsigned short uintlé t;

vold update_average{uintlﬁ_t current value);

fdefine NUMBER OF VALUES TO AVERAGE (1lu)

static uintlé t data values[NUMBER OF VALUES TO AVERAGE];

static uintlé t average = Ou;

Wr o =d oy i oWl L Ba

void update average (uintlé t current value)
10: {
11: static uintlé t array offset = Ou;

12: static uintlé t data sums = Ou;

data sums -= data valUes|arl
16: data sums += current value;
17: average = (data sums / NUMBER OF VALUES TO AVERAGE);
18: data values[array offset] = current value;

19: }

[]-m

INTRODUCTION TO STATIC ANALY SIS 16

40

SAMPLE BUFFER OVERFLOW

FAILURE SOURCE CODE (C

LANGUAGE)

. fypedef unsigned short uint16_t;
: void update_average(uint16_t current_value);

1
2
3
4. #defne NUMBER_OF_VALUES_TO_AVERAGE (11u)

i)

G sanc wint16_t data_values[NUMBER_OF _VALUES_TO_AVERAGE],
I sac uint1o_t average = Qu;

8
9

. void update_average(uint16_t current_value)
10: {
11, staic uint16_! array_ofset = Qu;
12, staic uint16_! data_sums = Qu;

1

L

3

14 array_offset = ((array_offsett+) % NUMBER_OF _VALUES_TO_AVERAGE);
15: data_sums -= data_valuesfarray_offset],

16; data_sums += current_value,

17, average = (data_sums / NUMBER_OF_VALUES_TO_AVERAGE),

18. data_values(array_offset] = current_value,

19}

INTRODUCTION TO STATIC ANALY SIS

E|Th

i
i
aq

--- Module: buffer overflow.c

array offset = ((array offset++) %
NUMBER OF VALUES TO AVERAGE);

"t** \index{LINT}LINT: buffer overflow.c(14) Warning 564:
variable "array offset’ depends on order of evaluation

[\index{MISRA C}MISRA Rule 46]"

» Fault manifesting itself as a failure depends upon the
compiler's handling of source code!

o Some compilers may handle code properly. ——

o QOther compilers may cause failure to occur. —
affact behavior, -

L] L]
[] III' [Y Als Als
r W L =

+ Especially true of optimization flags

SAMPLEBUFFER OVERFLOW FAILURE
LINTOUTPUT

E|Th

18 &

40

Violations/KLOC

200

19.0 .7 18\ Coding Standards Conformance Checking

Coding Standards Conormance Checking
N

16.0

120 =

@
o

IMPROVEMENT)
S

5.1 5.2
2.2

0.0
Nov-04Dec-04Jan-05 Feb-05 Mar-05 Apr-05 May-05Jun-05 Jul-05

IMPACT OF SA OVER TIME
(DR. DOBBS, JUNE 16, 2006 CODE QUALITY

INTRODUCTION TO STATIC ANALY SIS 19 - s

ADDING SATO
DEVELOPMENT PROCESS

* 1. Develop a coding standard and style guides

* Style quide is not a necessity to use SA effectively

* There may be multiple style guides
* 2 Automate compliance checking with the standard

* 3. Add SA Compliance checking to review process

INTRODUCTION TO STATIC ANALY SIS

20

STYLE GUIDES

Provides stylistic guidance for developing source-code

modules.
ltems to define

Include:

o Copyright notices

* requisite commenting

* |ndentation
* naming conve

o Any other styl

ntions

stic items

Can raise significant debate amongst software engineers

Can be automated by providing templates to automatically
format code in conformance with the style guide

nTRODBoN T TR HIRL P pper s empites. -y 27

e

40

CODING STANDARD

Uefines which coding constructs can and can not be used in a project
* Should predominantly be enforceable through static analysis methods

* Should include general best practices as well as past experiences within the domain

Example rule:
o “Alf variables shall be assigned a value before being used in any operation®
« Statically detectable

* (Can be easily understood by a programmer.

Defned deviation procedure

* With every coding standard, there will be a need for an occasional deviation.

* All deviations should be reviewed in a formal setting (peer review, formal review, walkthrough, etc.)

Standards Exist to use as a baseline
v MISRA C
* High Integrity C++

INTRODUCTION TO STATIC ANALY SIS 22

E|Th

i
i
aq

MSOE SDL MATERIAL

Tabs should be used as the correct method of indentation. Tabs should be
4 spaces In width.

Avoid lines longer than 80 characters as these cause problems on smaller
displays and terminals.

Lines that must wrap should be broken only at the following points:

INTRODUCTION TO STATIC ANALY SIS 23

After a comma

Before an operator
Prefer higher-level breaks over lower-level breaks

Align the new line with the beginning of the expression at the same level on
the previous line.

If all else fails, use an indent of 8 spaces.

Two blank lines should be added between:

+ Sections of a source file.

+ (Class and interface definitions.

ERIAL (PART 2)

— One blank line should be added between:
+ Methods.

MA

1+ Local variables in a method and its first statement.

+ Before a block or single-line comment

SD

LI -+ Between logical sections inside a method to improve readability.

8 Ablank space should be added between:
NTROquchT IanN TEJI FsTIC ALYSIS

+ Akeyword s opening parentheses. (Not method names

gﬁl

Th

i

40

MISRAC / C++

Misra C/C++ (Motor Industry Software Reliability Association)

Rules first introduced in 1998

Revised in 2004: 141 rules for C

Revised to cover C++in 2008 (mostly derived from JSF rules): 228 rules
Widely used in motor vehicle industry

Some support in popular embedded compilers

Closed standard

E|Th

SE3910 REAL TIME SYSTEMS .

40

~

Design source-code 0
| mﬂh

(Peer review design

Hurn-ud- nmcﬂli

o

I‘m ement source

| « for medule

.

This software-development process segment incorporates
static analysis

4[

Code inspect Imphmauhﬂ uhmu}
Review static-analysis eutput

|

static-analysis teols output inte

Archive source code and
configu management system

[Run static-analysis tools |

Y

Fix defect

(ronmodue)

SW DEVELOPMENT
ROCESS INCORPORATING
STATIC ANALYSIS

Schilling and Alam, Embedded Systems Design
(L INTRODUCTION TO STATIC ANALYSIS

Yos

(‘I‘IH module

26

AU ITUNIAITE CUDUING
S§ANDARD COMPLIANCE

Sample flowcharl of an automated build script incorporaling static analysis

Is
@ —‘ Compile I static analysis ~\N°
inhibi

Yes

i T
Check compiler version. Is N
Create necessary directory structure. static analysis ° " Run static-analysis "
Check static-analysis tool version. inhibited? tool on link output
\ Abort build if problems are found —l_J

Run static-analysis " Generate static- |
Check out tool on source-code analysis report(s)
static-analysis file & J
configuration file

Are
Check out Il files .)
[source-code file l No n;npilld? Yos Link code
Build finished

ling and Qo SEREHER TS PRI ANALYSIS 7 =

Applying to existing code base can be challenging
Success depends upon

* age of the code

* engineers programming style

o paradigms used

* Diligence of engineers applying static analysis

ACY CODE INTEGRATION

- *'1 Many projects have abandoned SA when the first run of the t o%
- genelates 100! 000 '6F more- wataings.

Treat each statically detectable fault as a bug fix.

o Each time a fault Is removed, there's the possibility of injecting a more
serious fault into the module.

>~

O

O

|

O+ The worst thing would be to attempt to repair a false-positive that was
8 statically detected as a fault and inject a failure.
I
|_
L
=

* This must be done diligently, as each Statically Detectable fault could be a
catastronphic failure in the making

¢ Arane 'V

LEGACY SOFTWARE

+ With legacy code, the most important information to track isn't .

necessaty tbeipresenaan siafisally detectable faults, but the ° 7
change in the number of faults as revisions are madet that code.

LEGACY SOFTWARE

FLOWCHART

Conceptual flow for analysis of legacy soffware

Gt)
sood or bad?
Good

[":f.‘z‘.:,. :..':.".:'.::ar;}
new/changed features.

Review static
{ﬂﬂdflil nulpuh]

oo 5 [ty ..;.]

Schilling and Alam, Embedded Systems Design
INTRODUCTION TO STATIC ANALYSIS

30

Integrate static analysis into a software development process
hitp://www.embedded.com/shared/printableArticle.jhtml?articlelD=193500830
NIST SAMATE - Software Assurance Metrics And Tool Evaluation Project
hitp://samate.nist.qov/index.php/Main_Page

Static Source Code Analysis Tools for C

* hitp://www.spinroot.com/static/

RESOURCES -

E|Th

INTRODUCTION TO STATIC ANALY SIS 1 I

40

