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INDUCTION VARIANCE

o For(l=1;1<=10; i++)

. 2
v ,E\lﬁﬂ.]:[]J
o

SE3910 REAL TIME SYSTEMS




LOOP UNROLLING

* Duplicate instructions executed in a loop to reduce the number of operations and
hence the loop overhead incurred
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LOOP JAMMING

+  Combine similar loops together to improve performance

For (I = 1; 1<=100;1++)
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X1 = y{ir's, o /) 7\5
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For (I=1;1<=100; j++)
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+  Combine similar loops together to improve performance

For (I = 1; 1<=100;1++)
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ROADMAP

oday
* Embedded Code Quality and MISRA

lednestay—

+ Real Time Software Qualities

Friday

o Structured Design and Data Flow Diagrams
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OBJECTIVES

Understand the difference hetween static analysis and testing

_Define-the-hafting-probles—

Explain the difference between a false positive and a false negative

Construct a primitive static analysis tool using grep —

Describe the impact of using static analysis tools over time —

Compare and contrast style guides and programming standards —

am-the_stens-ecessarn—to-tiesrale

New-code —
~egacy-cote—
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INTRODUCTION

Static analysis is the process of evaluating a system or component based on its form,
structure, content, or documentation [IEEE]

* Does not involve the execution of the program ==

+ Software Inspections are a form of static analysis
C/ C7+

‘even well tested code written by experts contains a surpnsm g number of obvious
bugs™ [Hovermeyer/Pugh|

"Java has many language features and APIs which are prong to misuse.”
[Hovermeyer/Pugh] —

Static analysis tools “can serve an important role in raising the awareness of
developers about subtle correctness issues. . . . prevent future bugs”
[Hovermeyer/Pugh] -

E|Th
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STATICANALYSIS OVERVIEW

Similar to a spell checker or grammar checker. -

Search through code to detect bug patterns

————

« error prone coding practices that arise from the use of erroneous design patterns, misunderstanding of
language semantics, or simple and common mistakes.

otatic Analysis fools detect faults

«  Not all faults will fail
%% of downime comes fom
10% of the faults

Can detect many different
classifications of software faults

+  Coding standards violations ==
+  Buffer overflows (Viega etal) -
+  decurty vulnerabilities (Lwshits and Lam) -
+  Memory leaks (Rai) -
Timing anomalies (race conditions, deadlocks, and livelocks) (Adho) ==
Th
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* Required to claim compliance with MISRA C Standard

+ Between 40% and 60% of statically detectable faults wil
eventually manifest themselves in the field (QA Systems)

Has been shown to reduce software defects by a factor of six
(Xiao and Pham’

U+ Canremove upwards of 91% of errors (R. Glass)

ALY SIS OVERVIEW

[ave been shown to have a 92% RO 4,
NEW: Required by the state of New York for contracted S

STATIC

X T
"
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STATIC ANALYSIS OVERVIEW

» Impossible to prove a software program correct in the
general case

» Manifestation of the Hal ting Problem>
( O E(//?C1l 1o A )((Fb’n(/ﬁlfl;j
< Most static analysis toW
Incomplete. |
e é&;,:/] ‘I‘/fﬁ
1 4/{7 s “yefern
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STATIC ANALYSIS OVERVIEW

» Impossible to prove a software program correct in the
general case

» Manifestation of the Halting Problem.

False
/C; /"’5!‘/;/@
» Most static analysis tools are unsound and

K—’_B }:»1//:, /’)de/

(4)
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STATIC ANALYSIS
CLASSIFICATIONS

General Purpose Tools

o (eneral purpose Static Analysis tools are those geared for general
developmental usage

* Lint, QAC, Polyspace C, JLint, Findbugs
Security Tools

o Static Analysis tools targeting security issues within source code
o RATS (Rought Auditing Tool for Security), SPLint, Flawfinder

Style Checking Tools

* Audit software code from a stylistic standpoint ensuring consistant
implementation style

o PMD, Checkstyle

Teaching Tools T
INTRODUCTION TO STATIC ANALY SIS (I
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IS CODE?

1: a_routine( uint32_t x, uint32_t oP

2

3 1

4

bB: )i "F
G

i

8: if ( ok == 2 )

o: {

10: printf({ "OK has a value of 2.\n" );

printt orrect!i\n" J;

16 }

18: /* 1f (commented=TRUE) Even though thies code is commented out,
19 the error is still shown. */

[]-m
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1: void example_routine( uint32_t x, uint32_t ok, BOOL wrong )
2: {

3 it (x = 1)

4: {

B: printf( "X has a value of 1.\n" );

6: }

T

8: if ( ok == 2 )

9: {

10: printf({ "OK has a value of 2.\n" );

11: ¥

12

13 if ( wrong = FALSE )

14: {

15: printf( "You are correct!\n" );

16: ¥

17:

18: /* 1f (commented=TRUE) Even though thies code is commented out,

19: the error is =till shown. #*/

SIMPLE “HOME MADE” STATIC
ANALYSIS TOOL USING GREP

$ graep "if ([l:space:]l=*[[:alnum:]]=*[[:apace:]]*=[[:apace:]]+*
[([:alnum:]]" error_filea.c
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SIMPLE “HOME MADE” STATIC
ANALYSIS TOOL USING GREP

1: void example_routine( uint32_t x, uint32_t ok, BOOL wrong )
2: {

3 it (x = 1)

4 {

B: printf( "X has a value of 1.\n" );

6: }

T

8: if ( ok == 2 )

9: {

10: printf({ "OK has a value of 2.\n" );

11: ¥

12

13 if ( wrong = FALSE )

14: {

15: printf( "You are correct!\n" );

16: ¥

17:

18: /* 1f (commented=TRUE) Even though thies code is commented out,
19 the error is still shown. */

20: }

if ( wrong = FALSE )

/* 1f (commenteds=TRUE) Even though thie code is commented out,

[wwa@localhost wwsl$




» One of the oldest and readily available static analysis
tools

* Developed initially by Bell Labs

o Clanguage —

LINT

o UNIX development
* Now available for Dos, Windows, Linux, OS/2

_—
» Commercial version available from Gimpel Software

» Supports value tracking, MISRA C standard compliance verification,
and Effective C++ Standards T

N AR EEET O MO TATRANALY SIS 15 "



SAMPLE BUFFER OVERFLOW

FAILURE SOURCE CODE (C

GUAGE)

L

typedef unsigned short uintlé t;

vold update_average{uintlﬁ_t current value);

fdefine NUMBER OF VALUES TO AVERAGE (1lu)

static uintlé t data values[NUMBER OF VALUES TO AVERAGE];

static uintlé t average = Ou;

Wr o =d oy i oWl L Ba

void update average (uintlé t current value)
10: {
11: static uintlé t array offset = Ou;

12:  static uintlé t data sums = Ou;

data sums -= data valUes|arl
16: data sums += current value;
17: average = (data sums / NUMBER OF VALUES TO AVERAGE);
18: data values[array offset] = current value;

19: }

[]-m
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SAMPLE BUFFER OVERFLOW

FAILURE SOURCE CODE (C

LANGUAGE)

. fypedef unsigned short uint16_t;
: void update_average(uint16_t current_value);

1
2
3
4. #defne NUMBER_OF_VALUES_TO_AVERAGE (11u)

i)

G sanc wint16_t data_values[NUMBER_OF _VALUES_TO_AVERAGE],
I sac uint1o_t average = Qu;

8
9

. void update_average(uint16_t current_value)
10: {
11, staic uint16_! array_ofset = Qu;
12, staic uint16_! data_sums = Qu;

1

L

3

14 array_offset = ((array_offsett+) % NUMBER_OF _VALUES_TO_AVERAGE);
15: data_sums -= data_valuesfarray_offset],

16; data_sums += current_value,

17, average = (data_sums / NUMBER_OF_VALUES_TO_AVERAGE),

18. data_values(array_offset] = current_value,

19}

INTRODUCTION TO STATIC ANALY SIS
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--- Module: buffer overflow.c

array offset = ((array offset++) %
NUMBER OF VALUES TO AVERAGE);

"t** \index{LINT}LINT: buffer overflow.c(14) Warning 564:
variable "array offset’ depends on order of evaluation

[\index{MISRA C}MISRA Rule 46]"

» Fault manifesting itself as a failure depends upon the
compiler's handling of source code!

o Some compilers may handle code properly. ——

o QOther compilers may cause failure to occur. —
affact behavior, -

L] L ]
[ ] III' [ Y Als Als
r W L =

+ Especially true of optimization flags

SAMPLEBUFFER OVERFLOW FAILURE
LINTOUTPUT
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Violations/KLOC

200

19.0 .7 18\ Coding Standards Conformance Checking

Coding Standards Conormance Checking
N

16.0

120 =

@
o

IMPROVEMENT)
S

5.1 5.2
2.2

0.0
Nov-04Dec-04Jan-05 Feb-05 Mar-05 Apr-05 May-05Jun-05 Jul-05

IMPACT OF SA OVER TIME
(DR. DOBBS, JUNE 16, 2006 CODE QUALITY
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ADDING SATO
DEVELOPMENT PROCESS

* 1. Develop a coding standard and style guides

* Style quide is not a necessity to use SA effectively

* There may be multiple style guides
* 2 Automate compliance checking with the standard

* 3. Add SA Compliance checking to review process

INTRODUCTION TO STATIC ANALY SIS
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STYLE GUIDES

Provides stylistic guidance for developing source-code

modules.
ltems to define

Include:

o Copyright notices

* requisite commenting

* |ndentation
* naming conve

o Any other styl

ntions

stic items

Can raise significant debate amongst software engineers

Can be automated by providing templates to automatically
format code in conformance with the style guide

nTRODBoN T TR HIRL P pper s empites. -y 27
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CODING STANDARD

Uefines which coding constructs can and can not be used in a project
*  Should predominantly be enforceable through static analysis methods

*  Should include general best practices as well as past experiences within the domain

Example rule:
o “Alf variables shall be assigned a value before being used in any operation®
«  Statically detectable

*  (Can be easily understood by a programmer.

Defned deviation procedure

*  With every coding standard, there will be a need for an occasional deviation.

*  All deviations should be reviewed in a formal setting (peer review, formal review, walkthrough, etc.)

Standards Exist to use as a baseline
v MISRA C
* High Integrity C++

INTRODUCTION TO STATIC ANALY SIS 22
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MSOE SDL MATERIAL

Tabs should be used as the correct method of indentation. Tabs should be
4 spaces In width.

Avoid lines longer than 80 characters as these cause problems on smaller
displays and terminals.

Lines that must wrap should be broken only at the following points:

INTRODUCTION TO STATIC ANALY SIS 23

After a comma

Before an operator
Prefer higher-level breaks over lower-level breaks

Align the new line with the beginning of the expression at the same level on
the previous line.

If all else fails, use an indent of 8 spaces.



Two blank lines should be added between:

+ Sections of a source file.

+ (Class and interface definitions.

ERIAL (PART 2)

— One blank line should be added between:
+  Methods.

MA

1+ Local variables in a method and its first statement.

+ Before a block or single-line comment

SD

LI -+ Between logical sections inside a method to improve readability.

8 Ablank space should be added between:
NTROquchT IanN TEJI FsTIC ALYSIS

+ Akeyword s opening parentheses. (Not method names

gﬁl
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MISRAC / C++

Misra C/C++ (Motor Industry Software Reliability Association)

Rules first introduced in 1998

Revised in 2004: 141 rules for C

Revised to cover C++in 2008 (mostly derived from JSF rules): 228 rules
Widely used in motor vehicle industry

Some support in popular embedded compilers

Closed standard

E|Th
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Design source-code 0
| mﬂh

( Peer review design

Hurn-ud- nmcﬂli

o

I‘m ement source

| « for medule

.

This software-development process segment incorporates
static analysis

4[

Code inspect Imphmauhﬂ uhmu}
Review static-analysis eutput

|

static-analysis teols output inte

Archive source code and
configu management system

[ Run static-analysis tools |

Y

Fix defect

(ronmodue )

SW DEVELOPMENT
ROCESS INCORPORATING
STATIC ANALYSIS

Schilling and Alam, Embedded Systems Design
(L INTRODUCTION TO STATIC ANALYSIS
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AU ITUNIAITE CUDUING
S§ANDARD COMPLIANCE

Sample flowcharl of an automated build script incorporaling static analysis

Is
@ —‘ Compile I static analysis ~\N°
inhibi

Yes

i T
Check compiler version. Is N
Create necessary directory structure. static analysis ° " Run static-analysis "
Check static-analysis tool version. inhibited? tool on link output
\ Abort build if problems are found —l_J

Run static-analysis " Generate static- |
Check out tool on source-code analysis report(s)
static-analysis file & J
configuration file

Are
Check out Il files . )
[ source-code file l No n;npilld? Yos Link code
Build finished

ling and Qo SEREHER TS PRI ANALYSIS 7 =




Applying to existing code base can be challenging
Success depends upon

* age of the code

* engineers programming style

o paradigms used

* Diligence of engineers applying static analysis

ACY CODE INTEGRATION

- *'1 Many projects have abandoned SA when the first run of the t o%
- genelates 100! 000 '6F more- wataings.



Treat each statically detectable fault as a bug fix.

o Each time a fault Is removed, there's the possibility of injecting a more
serious fault into the module.

>~

O

O

|

O+ The worst thing would be to attempt to repair a false-positive that was
8 statically detected as a fault and inject a failure.
I
|_
L
=

* This must be done diligently, as each Statically Detectable fault could be a
catastronphic failure in the making

¢ Arane 'V

LEGACY SOFTWARE

+ With legacy code, the most important information to track isn't .

necessaty tbeipresenaan siafisally detectable faults, but the ° 7
change in the number of faults as revisions are madet that code.




LEGACY SOFTWARE

FLOWCHART

Conceptual flow for analysis of legacy soffware

Gt )
sood or bad?
Good

[":f.‘z‘.:,. :..':.".:'.::ar;}
new/changed features.

Review static
{ﬂﬂdflil nulpuh]

oo 5 [ty ..;.]

Schilling and Alam, Embedded Systems Design
INTRODUCTION TO STATIC ANALYSIS
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Integrate static analysis into a software development process
hitp://www.embedded.com/shared/printableArticle.jhtml?articlelD=193500830
NIST SAMATE - Software Assurance Metrics And Tool Evaluation Project
hitp://samate.nist.qov/index.php/Main_Page

Static Source Code Analysis Tools for C

* hitp://www.spinroot.com/static/

RESOURCES -

E|Th
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