SE3910- REAL TIME SYSTEMS

Coding Standards

ROADMAP

* Monday L e l
* Embedded Code Quality and MISRA

o Wedosis)— F ,,; A, g
+ Real Time Software Qualities

" Bmy" %
o Structured Design and Data Flow Diagrams

SE3910 REAL TIME SYSTEMS

OBJECTIVES

Understand the difference hetween static analysis and testing

Define the halting problem

Explain the difference between a false positive and a false negative

Construct a primitive static analysis tool using grep

Describe the impact of using static analysis tools over time

Compare and contrast style quides and programming standards

Explain the steps necessary to integrate static analysis into a development process
+ New code

* Legacy code

E|Th

SE3910 REAL TIME SYSTEMS .

40

INTRODUCTION

Static analysis is the process of evaluating a system or component based on its form,

structure, content, or documentation [IEEE]

* Does not involve the execution of the program

+ Software inspections are a form of static analysis

‘even well tested code written by experts contains a surprising number of obvious
bugs” [Hovermeyer/Pugh]

"Java has many language features and APIs which are prone to misuse.”
[Hovermeyer/Pugh]

Static analysis tools “can serve an important role in raising the awareness of
developers about subtle correctness issues. . . . prevent future bugs’
[Hovermeyer/Pugh]

E|Th

INTRODUCTION TO STATIC ANALY SIS L

i
i
aq

STATICANALYSIS OVERVIEW

Similar to a spell checker or grammar checker.
Search through code to detect bug patterns

« error prone coding practices that arise from the use of erroneous design patterns, misunderstanding of
language semantics, or simple and common mistakes.

otatic Analysis fools detect faults

« Not all faults will fail
v %0% of downime comes fom
10% of the faults

Can detect many different
classifications of software faults

+ Coding standards violations
+ Buffer overflows (Viega et all
+ Securty vulnerabilities (Livshits and Lam)
+ Memory leaks (Rai)
Timing anomalies (race conditions, deadlocks, and livelocks) (Arho)
Th

INTRODUCTION TO STATIC 2N
ANALYSIS 5

_~All Faults /Faults which fail

STATIC ANALYSIS OVERVIEW

Required to claim compliance with MISRA C Standard

Between 40% and 60% of statical

eventually manifest themselves ir

y detectable faults will
the field (QA Systems)

Has been shown to reduce software defects by a factor of six

(Xiao and Pham)

Can remove upwards of 91% of errors (R. Glass)

Have been shown to have a 92%

ROI ... (Schilling)

NEW: Required by the state of New York for contracted SW

INTRODUCTION TO STATIC ANALY SIS

STATIC ANALYSIS OVERVIEW

N

ﬁ.

(

» Impossible to prove a software program correct in the
general case

e

» Manifestation of the Halting Problem.

» Most static analysis tools are unsound and
incomplete.

INTRODUCTION TO STATIC ANALY SIS f !

STATIC ANALYSIS
CLASSIFICATIONS

General Purpose Tools

o (eneral purpose Static Analysis tools are those geared for general
developmental usage

* Lint, QAC, Polyspace C, JLint, Findbugs
Security Tools

o Static Analysis tools targeting security issues within source code
o RATS (Rought Auditing Tool for Security), SPLint, Flawfinder

Style Checking Tools

* Audit software code from a stylistic standpoint ensuring consistant
implementation style

o PMD, Checkstyle

Teaching Tools T
INTRODUCTION TO STATIC ANALY SIS 8
* Developed to help students develop better software .

HIS CODE?

(NOTE: THIS IS C)

WHAT IS WRONG WITH

Y = = = ==
O~ bd WwNE=O

N
o

OO0~ b W=

[y
0
@ L

: void example_routine(uint32_t x, uint32_t ok, BOOL wrong)
1 £

if (x=1)
{
printf("X has a value of 1.\n");
+
if (ok == 2)
{
printf("OK has a value of 2.\n");
}
if (wrong = FALSE)
{
printf("You are correct!\n"),;
+

/* if (commented=TRUE) Even though this code is commented out,
the error is still shown. */

[]m

INTRODUCTION TO STATIC ANALY SIS 9

40

10
11:
12:
13:
14:
15:
16:
17:
18;
19:
20

DO~~~ WN-

: void example_routine(uint32_t x, uint32_t ok, BOOL wrong)

i 4

if (x=1)
{
printf("X has a value of 1.\n");
}
if (ok == 2)
{
printf("OK has a value of 2.\n");
}
if (wrong = FALSE)
{
printf("You are correct!\n");
}

/* if (commented=TRUE) Even though this code is commented out,
the error is still shown. */

+

SIMPLE “HOME MADE” STATIC
ANALYSIS TOOL USING GREP

[[:alnum:]]" error_files.c

‘5 grep "if ([[:space:]l*[[:alnum:]]*[[:space:]]l*=[[:space:]]=*

[]m

INTRODUCTION TO STATIC ANALY SIS 10

40

10:
11:
12:
13:
14 :
15:
16:
17
18:
19;
20

DO~ N -

: void example_routine(uint32_t x, uint32_t ok, BOOL wrong)
»

if (x=1)
{
printf("X has a value of 1.\n");
}
if (ok == 2)
{
printf("OK has a value of 2.\n");
}
if (wrong = FALSE)
{
printf("You are correct!\n");
}

/* if (commented=TRUE) Even though this code is commented out,
the error is still shown. */
}

SIMPLE “HOME MADE” STATIC
ANALYSIS TOOL USING GREP

¥ grep "if ([[:space:]]l*[[:alnum:]J]*[[:space:]]*=[[:space:]]*
[[:alnum:]]" error_files.c

if (x=1)

if (wrong = FALSE)

/* 1f (commented=TRUE) Even though this code is commented out,
[wwus@localhost wws]$

INTRODUCTION TO STATIC ANALYSIS N

40

LINT

» One of the oldest and readily available static analysis tools

* Developed initially by Bell Labs
+ (C Language
+ UNIX development

* Now available for Dos, Windows, Linux, OS/2
o Commercial version available from Gimpel Software

+ Supports value tracking, MISRA C standard compliance verification, and
Effective C++ Standards

+ Analyzes C and C++ code

» ALOA metrics tool is avallable to collect quality metrics from Lint tool.

o XML Output readily available

INTRODUCTION TO STATIC ANALY SIS 12

SAMPLEBUFFER OVERFLOW FAILURE

SOURCE CODE (C LANGUAGE)

typedef unsigned short uintlé t;

void update average(uintl6 t current value);

fdefine NUMBER OF VALUES TO AVERAGE (1lu)

static uintlé t data values[NUMBER OF VALUES TO AVERAGE];

static uintlé t average = Ou;

w oo =3 oy = L b

void update average(uintlé t current value)

10: 4
11: static uintlé t array offset = Qu;
12: static uintlé t data sums = Ou;

array offset

data sums -= data values[array o
le: data sums += current value;
17: average = (data_sums / NUMBER_OF VALUES TO AVERAGE);
16: data values[array offset] = current value;
19: 1}

INTRODUCTION TO STATIC ANALY SIS

= ((array offset++) % HUMBER_GE_UALUES_TQ;AHERRGE];

[]m

i
i
aq

--- Module: buffer overflow.c

array offset = ((array offset++) % NUMBER OF VALUES TO AVERAGE);

"*** \index{LINT}LINT: buffer overflow.c(1l4) Warning 564: variable

farray offset’ depends on order of evaluation [\index{MISRA C}MISRA
Rule 4¢]™

o Fault manifesting Itself as a failure depends upon the compiler's handling of
source code!

+ Some compilers may handle code properly.
+ Other compilers may cause failure to occur.

+ Compller options may effect behavior.

+ Especially true of optimization flags

SAMPLEBUFFER OVERFLOW FAILURE
LINTOUTPUT

E|Th

INTRODUCTION TO STATIC ANALY SIS 14 5

40

IMPACT OF SAOVER TIME
DR. DOBBS, JUNE 16, 2006 CODE QUALITY IMPROVEMENT
5

Violations/KLOC / Be -/,:, C 5/4

LY

/ Coding Standards Conformance Checking

\

5 & B
©O © o

o
o

=

Nov-O4Dec-04Jan-05 Feb-O5S Mar-05 Apr-05 May-0¢

A b

=

ETh

15 &

40

TO STATIC ANAL

ADDING SATO
DEVELOPMENT PROCESS

* 1. Develop a coding standard and style guides

o Style guide is not a necessity to use SA effectively j~

* There may be multiple style guides s~
+ 2. Automate compliance checking with the standard)_ Vj’.v

* 3. Add SA Compliance checking to review process
-~ 5/4 7/4'/ /

Gt Chopf

INTRODUCTION TO STATIC ANALY SIS 16

STYLE GUIDES

* Provides stylistic quidance for developing source-code modules.

=

o Items to define include: //

+ Copyright notices — (
- requisite commenting.. / f * /

Can be automated by providing templates to automatically format code in
conformance with the style guide

+ Eclipse, JEdt, CodeVinight all support style templates.

INTRODUCTION TO STATIC ANALY SIS 17

CODING STANDARD

Uefines which coding constructs can and can not be used in a project
——
* Should predominantly be enforceable through stic analysis methods

* Should include general best practices as well as past experiences within the domain

Example rule:
o “Alf variables shall be assigned a value before being used in any operation® I——
« Statically detectable

* (Can be easily understood by a programmer.

Defned deviation procedure e

* With every coding standard, there will be a need for an occasional deviation.

* All deviations should be reviewed in a formal setting (peer review, formal review, walkthrough, etc.)

Standards Exist to use as a baseline
v MSRAC

* High Integrity C++ 4
E Th

INTRODUCTION TO STATIC ANALY SIS 18

40

MSOE SDL MATERIAL

* Tabs should be used as the correct method of indentation. Tabs should be
4 spaces In width.

el

e —

* Avoid lines longer than 80 characters as these cause problems on smaller
displays and terminals. —

* Lines that must wrap should be broken only at the following points:

INTRODUCTION TO STATIC ANALY SIS 19

After a comma - h[‘ ((y (2)
Beforeanope_.[itor.. u: ())5‘))

Prefer higher-level breaks over lower-level breaks -

Align the new line with the beginning of the expression at the same level on
the previous line. =

If all else fails, use an indent of 8 spaces.

MSOE SDL MATERIAL (PART 2)

Two blank lines should be added between: —

Class and interface definiions. «

Sections of a source file. g } /

One blank line should be added between:

Local variables in a method and its first statement. «

Before a block or single-line comment. = %
Between logical sections inside a method to improve readability. = }

g

Vethods. = (”/ /<'

A blank space should be added between:

A keyword (such as if, while, for) and its opening parentheses. (Not mgfod names!) =
Comma-separated arguments in a list ~

All binary operators (except ") ; Unary operators should never G separated.

The expressions in a for" statement, including the for-each version.

A typecast and the variable name 1t affects.

Th

INTRODUCTION TO STATIC ANALY SIS 20 5

40

MISRA C AND MISRA C++

A

MISRA C:2012

-—
Guidelines for the use of the
C language in critical systems

SE3910 REAL TIME SYSTEMS

A The atae industry SoMware ileliability Axsociation

MISRA C++:2008

Guidelines
forthe use ‘o=

of the AN
C++ language N

in critical ’ |
systems |

| AW\

I
A I II\\

MISRAC / C++ BACKGROUND

* Guidelines discuss general problems in software engineering

—e—~

* note Cand C++ do not have as much error checking as other languages do.

+ MISRAC

* Subset of the C language. -
+ Based on the ISO/IEC 9899:1990 C standard

* Every MISRAC program is a valid C program. ~

* 141 rules that constrain the C language.
>

¢+ MISRAC++

« Subset of the ISO/IEC 14882:‘2_@3 C++ standard.

« 228 rules

———

SE3910 REAL TIME SYSTEMS

E|Th

i
i
aq

EXAMPLE RULES

Rule 0-3-2 (Required) If & function generates error information, then that
error information shall be tested,

Rationale

A function (whether it is part of the standard library, a third party library or a user defined function)
may provide some means of indicating the occurrence of an error. This may be via a global
error flag, a parametnic error flag, a special return value or sont=Mer means, Whenever such a
mechanism is provided by a function the calling program shall check for the indication of an error
as s00n as the function returns,

Note, however, that the cheeking of § alues to functions is considered a more robust means
of error prevention than try M ct errors after the function has completed.

Em"lili,-_-_ o _—&-_-r . hrre flag | 4’, /r 4 7

lntad € Enl ¢ 1ntae € 1)

|
intdd t result = O
||||||| EUCCesE = I',-||-|—|]
]

fnd | 1, BUCCess)| A Non=compliant giiccess not checked
return result;

{{ Compliant - success checked

See also
Rule 19-3-1

la

EXAMPLE RULES

6.27 Comments

Rule 2-7-1 (Required) The character sequence /* shall not be used within a
C-style comment, ===

Rationale

CH++ does not support the nesting of C-style comments even though some compilers support this
as a non-portable language extension. A comment beginning with /+ continues until the first +/ 1
encountered. Any /+ occurring inside a comment 1s a violation of this rule.
(&2 Wy /
2,X

Example
Consider the following code fragment:

some comment, end comment marker ageidentally omitt

Perform Critical Safety Function(X);
/[* this "comment™ 1s Non-compliant */
In reviewing the code containing the call to the function, the assumption is that it 1s executed code,

Because of the accidental omission of the end comment marker, the call to perform Critical
safety Function will not be executed.

ETh

SE3910 REAL TIME SYSTEMS .

40

/l -74/; 7/&:4[7//"“4 ///(j
5/.47(/4}.-7

Rule 2-10-2 (Required) Identifiers declared in an inner scope shall not hide an

identifier declared in an outer scope.,

Rationale

If an identifier is declared in an inner scope and it uses the same name as an identifier that already
exists in an outer scope, then the innermost declaration will “hide” the outer one, This may lead
o developer confusion.

The terms outer and inner scope are defined as follows:

* Identifiers that have file scope can be considered as having the outermost scope.
* Identificrs that have block scope have a more inner scope.
v Successive, nested blocks, introduce more inner scopes.

LE RULES

B... 71143 S

intle t 1; // This 18 a different variable
// This 18 Non-compllant
L = 3} [/ 1t could be confusing as to which 1 this refers

EXAM

void fn (intl6 t 1) // Non=-compliant
{

SE3910 REAL TIME SYSTEMS

E Th
15
iri
aq

Rule 3-2-3 (Required) A type, object or function that is used in multiple
a— translation all be declared in one and only one file,

Rationale '/\ vnl '/}u, /;74' (t

Having a single declaration of a type, object or function allows the compiler to du.tu.l incomp

(/) types for the same entity,
LI Normally, this will mean declaning an external identifier in a header file that will be included n
— any file where the identifier 1s defined or used.
-
Y Example
LLI header oo #= 4 {41'(’-‘4
_I) s //
0.~/ /e *
> hpp" ¢
” —
-~
|1:..L ad .+'_,E il

40

91@4‘@#?/87}&]S /,74‘/7 -

EXAMPLE RULES

Category AUVISOry o j y: } S 3 7/
Analysis Decidable, Single Translation Unit 7

Appliesto C90,C99 Jrec, £ieal /}

Rationale /{({’ ‘2’ ’j‘(':’4 4‘7 j Y (7

Unconstrained use of goto can lead to programs that are unstructured an &gémely difficult to
understand,

In some cases a total ban on goto requires the introduction of flags to ensure correct control flow,
and it is possible that these flags may themselves be less transparent than the goto they replace.
Therefore, If this rule Is not followed, the restricted use of goto is allowed where that use follows the
guidance in Rule 15.2 and Rule 15.3.

See also

Rule 9.1, Rule 15.2, Rule 15.3, Rule 154

SE3910 REAL TIME SYSTEMS - IT:

ad

Rule 134 The result of an assignment operator should not be used

C90 [Unspecified 7, 8, Undelined 18], C99 [Unspecilied 15, 18

Category AVISOTY o

Analysis Decidable, Single Translation Unit
Appliesto €90,C99

Amplification

Ungeineq 1]
[Koenig 6]

This rule applies éven if tha EXpression containing tr ASSIENMENT OPeratar 15 not fyaluaten

Rationale

The use of assignment operators, simple or compound, in combination with other arithmetic operators

5 not recommended because

o |t can significantly impair the readability of the code;

o [introduces acditional Sde effects inlo a statement making it more Aifiicult 1o avoud the

undelined benaviour coverad by Rule 13.2

Example Y =

SE3910 REAL TIMA

Man=mmmel 147 5 14 oron BT - 1 i1 ¥ 1 §
Non-compliant even though bool var = true 1sn't evaluated

([Oy == Qy) [bool var = true))

Non-compliant = value of x = £() is used
i (x=010))!=0)
* Non-compliant - value of b += ¢ 15 used

] &
| #

See also

Kule 13.2

alx)=y,
L 4

Rule 134 The result of an assignment operator should not be used (
C90 [Unspecitied 7 8; Undelined 18], C99 [Unspecified 15, 18; Undefined 32] l "‘(‘L a 0 .‘ -r I " e b‘ -

[Koenig 6] Ju == 0u) || ol va

Category AdvISory [4 y
Analysis Deécidable, Single Translkation Unit | 0‘

Appliesto €90,C99
liant - value of x = £() is used

/* Non=comp

Al cad f Qb X = = [)
Amplification . 3 (1)
i
This rule applies éven if tha EXpression containing tr ASSIENMENT OPeratar 15 not evaluaten |
Rationale . i
The use of assignment operators, simple or compound, in combination with other arithmetic operators ‘v '
|5 not recommended because /
o |t can significantly impair the readability of the code;
cos additional side effects into ment mal : It 1o avoid /* Non=compliant = values of c = D and b = ¢ = 0 are used di
o |Uintroduces additional Side effects into a statement making it mare Qifficult 1o avoid the ‘
undelingd benaviour covered by Rule 13.2 d=pbe=¢ =0
A See also
| | /Y Complian /
al = | iy X ¥ I : non=compllant = ER@ value of X ¥ y H|_]|E 133
"N T 1 wall [I VAR o |
L _val falpe was prot
i | wat fal | V‘ , _— ¢

SESQj REAL TIME SYSTEMS .

EXAMPLES

Rule 6-2-1 (Required) Assignment operators shall not be used in sub-
expressions,

Rationale

Assignments used in a sub-expression add an additional side effect to that of the full expression,
potentially resulting in a value inconsistent with developer expectations, In addition, this helps to

avold getting = and == confused.

Example
X =y
X=y=z;
if (x1!=10)
{
foo ():

|

bool bl = x != y;
bool b2}
b = x |l= y;

if((x=y) !=10)
{

ftoo ()
|
if (x=y)
{

foo ()

}

{f (intl6 t i = foo ())
1
|

- 522

[/ Non=compliant

// Compliant

o fllezg) 0)

{/ Compliant

/

S

[f HGH'CGmPljan[

BV (G)

{{ Compliant [] T

/

e

Rule 5-0-13 (Required) The condition of an if-statement and the condition of an

iteration-statement shall have type bool,

Rationale

If an expression with type other than bool 1s used in the condition of an if-statement or itevation-
statement, then its result will be implicitly converted to bool. The condition expression shall contain
an explicit test (vielding a result of type bool) in order to ¢larify the intentions of the developer,

Exception
A condition of the form fype-specifier-seq declarator 1s not required to have type bool,

This exception is introduced because altermative mechanisms for achieving the same ¢ffect are
cumbersome and error-prone,

4 9,

SE3910 REAL TIME SYSTEMS

EXAMPLES

Example

extern int32 t * fn ()/
extern intd2 t fn2 ()y
axtern bool fnd ()i
while (int32 t *p=tfn ()) // Compliant by exception
I
/f Code
|

{/ The following 18 a cumbersome but compliant example
do
I

int32 t *pe=1In{);

Lf (NULL == p)

|
break;
|
ff Code, ..,
I
whileé (true); ff Compliant

while (intd32 t length = fn2 ()) // Compliant by exception

{! Code
|
while (bool flag = £nd ()) // Compliant
I

/! Code
|
if (intd2 t*pesfn ()) // Compliant by exception
if (int32 t length = fn2 ()) f/ Compliant by exception
if { bool flag = fnd ()) // Compliant
1f { us) // Non=compliant
if (ul 66 (bool 1 <= bool 2)) // Non=-compliant
for (intdd t x = 107 X} ==x) // Non=compliant

I

40

SW DEVELOPMENT PROCESS
INCORPORATING STATIC ANALY SIS

This soffware-development process segment incorporales
static analysis

(

Design source-code

m Il'.

[

Ponr s il

Implement source

code for module

(

Run static-analysi
on source ﬂﬁd-

Code inspect implemented lnﬁwur-j/
‘ Review static-analysis output.

Archive source code and
static-analysis tools output inte
tﬂﬂﬂgurﬂl'hn management system

|

e

l Fix defect 9-(

Schilling and Alam, Embedded Systems

[Test module }/

Jesign o

INTRODUCTION TO STATIC ANALY SIS 1 I

40

Sample flowchart of an automated build script incorporaling stalic analysis

CEPE TN o

4' Yes

[Check compiler version, Is

[

Run static-analysis
tool on link output

l

[

Generate static-
analysis report(s)]

Create necessary directory structure. static analysis
Check static-analysis tool version. inhibited?
L Abort build if problems are found
Gt o]
static-analysis filo
configuration file
Check out) g
[source-code file J No Link “d']

AUTOMATE CODING STANDARD
COMPLIANCE

Scfling ang e SEBEHRERTETS PATEE ANALYSIS

Build finished

32

Applying to existing code base can be challenging

Success depends upon
+ age of the code
* engineers programming style

+ paradigms used

Z
O
<
A
O
1
I_

+ Diligence of engineers applying static analysis

Many projects have abandoned SA when the first run of the tool generates
00,000 or more wamings. =) A% §# 000 { o€

ith legacy code, It's often not practical to remove all statically detectable
faults.

E Th
?s

40

INTRODUCTION TO STATIC ANALY SIS 33

+ Treat each statically detectable fault as a bug fix. = 51‘5’(

» Each time afault is removed, there's the possibility of injecting a more serious
fault into the module.

» The worst thing would be to attempt to repair a false-positive that was
statically detected as a fault and inject a failure ===

» This must be done diligently, as each Statically Detectable fault could be a
cata c_failure in the making

* Ariane V

o With legacy code, the most important Information to track isn't necessarily
the presence of statically detectable faults, but the change in the number of
faults as revisions are made to that code.

LEGACY SOFTWARE
METHODOLOGY

o Coding standard development follows the same behavior as that for
traditional coding standard development.

INTRODUCTION TO STATIC ANALY SIS 34

LEGACY SOFTWARE

FLOWCHART

Conceptual flow for analysis of legacy soffware

Gt)
sood or bad?
Good

[":f.‘z‘.:,. :..':.".:'.::ar;}
new/changed features.

Review static
{ﬂﬂdflil nulpuh]

oo 5 [ty ..;.]

Schilling and Alam, Embedded Systems Design
INTRODUCTION TO STATIC ANALYSIS

35

RESOURCES

* Integrate static analysis into a software development process
o ntip:'www.embedded.com/shared/printableArticle.[htmI?articlelD=193900830

* NIST SAMATE - Software Assurance Metrics And Tool Evaluation Project
* hitp://samate.nist.gov/index.php/Main _Page

+ Static Source Code Analysis Tools for C

o hitp://www.spinroot.com/static/

E|Th

INTRODUCTION TO STATIC ANALY SIS 0

40

