SE3910- REAL TIME SYSTEMS

Memory Requirements and

July 20, 1969: The day software bugs nearly
lost us the moon

ROADMAP

Monday

* Memory Utilization
Wednesday

* Toyota systems failure
Friday

* Exam review and course wrapup

SE3910 REAL TIME SYSTEMS

OBJECTIVES

Explain the 1201 and 1021 alarms encountered on Apollo 11 and explain the
relevance to real time systems.

Explain how to calculate total memory utilization

Explain how to limit memory utilization

E|Th

SE3910 REAL TIME SYSTEMS .

40

MEMORY UTILIZATION

What types of memory usage do we have on our system?

SE3910 REAL TIME SYSTEMS

MEMORY UTILIZATION

Mr - MH."PH; +Mﬂ ’P.H "'Mm 'Pm +M}'H ' Pru-

SE3910 REAL TIME SYSTEMS

MEMORY ALLOCATION

f
M, =% Ae(T.PG.ST.DT.PM),

SE3910 REAL TIME SYSTEMS

TOTAL MEMORY UTILIZATION

Example: Total Memory Utilization

Suppose, a soft real-time system has 64 M bytes of program memory that
1s loaded at 75%, 16 M bytes of data memory that 1s loaded at 25%, and
8 M bytes of stack area that is loaded at 50%. All these memory-loading
figures represent the corresponding worst-case values. Besides, there 1s no
separate parameters area in this particular memory configuration. Thus, the
total memory utilization can be calculated by Equation 7.23

SE3910 REAL TIME SYSTEMS

LIMITING MEMORY

UTILIZATION

Avoid recursion

* Uses up a lot of stack space
Avoid memory fragmentation

* Avoid allocating and deallocating memory unnecessarily
Carefully manage the scope of variables

* Helps to control stack utilization
Optimize memory usage with registers

» Compiler setup and options

Estimate your memory usage before starting a project

* Helps to gauge are you using things efficiently

SE3910 REAL TIME SYSTEMS

E|Th

i
i
aq

MEMORY USAGE

Lets assume | have the following data

Person’s name
Person’s DOB
Person’s Address
Person’s Phone #
Person's user ID
Person’'s Password (Stored In hashed format)
A set of photos

+ Photo
Description
Date
Time

Users tagged in the photo

SE3910 REAL TIME SYSTEMS

E|Th

i
i
aq

VIDEO...

SE3910 REAL TIME SYSTEMS

APOLLO 11 LANDING

TRANSCRIPT

And, of course, 1t very nearly didn’t

Computer alarms on descent; threat to landing abort

Manual takeover at 1300 ft (90 secs of fuel)

4 miles downrange, bolder field

Heart pounding (166 beats per minute) Armstrong landed with only seconds of
fuel to spare.

102:38:26 Armstrong: Program Alarm. (6k ft agl)
102:38:30 Armstrong: It's a 1202.
102:38:32 Aldrin; 1202,

102:38:42 Armstrong (To Buzz) What is it? Let's incorporate (the landing radar
data). (To Houston) Give us a reading on the 1202 Program Alarm.

102:38:53 Duke: Roger. We got you...(With urgency) We're Go on that alarm.

102:39:14 Aldrin: Same alarm.. appears to come up when we have a 16/68 up.

102:42:08 Duke: Roger. Copy.. Eagle, Houston. You're Go for landing. Over
102:42:17 Aldrin: Roger. Understand. Go forlanding. .. Program Alarm

102:42:22 Aldrin; 1201 (3k ft)
102:42:24 Armstrong: 1201!
102:42:25 Duke: Roger. 1201 alarm. (Pause) We're Go. Same type. We're Go.

102:45:58 Amstrong Houston, Tranquility Base here. The Eagle has landed.

E Th
15
iri
aq

+ Final simulation done prior to
the launch,

+ Dave Scott and Jim Irwin in
the LM simulator,

* landing simulation was
aborted - unnecessarily

+ because of a 1201 program
alarm

+ Kranz sent Bales off to work up

rules for each type of alarm.
Later that evening, Bales rings

Kranz saying

+ “We should not have aborted
(due to that guidance system
error)’

p F

ad

FROM GENE KRANZ:
“FAILURE IS NOT AN OPTION~”

INSIDE THE APOLLO COMPUTERS

+ LEMICM computer’s had two types of memory: * Two Apollo control programs -
+ Waitlist handled <=9 quick tasks (4ms or less)

+ Executive handled longer tasks (up to 7 tasks)
+ Each tasks had erasable memory
+ Memory was shared (up to seven ways!)

+ fixed memory

« programs, constants and landmarks
» 36,864*15 bit words= 74KB (I!)

* erasable memory, v 1202 error: indicating a CPU overload,
+ variables/ registers used in calculations + On descent: searching for rendezvous radar data
+ 2,048 15-bit terms * Not fatal
» coincident-current ferrite cores woven into a rope ' {n:fn E”e%%tﬁéannﬂrﬁﬁneﬂa%rgegmmmmm fecognize T fask as being

with copper wires and sealed in plastic. « Ignored it performed other tasks instead

+ Real-time multi-tasking operating system.

+ Always processes the job with the highest prionty
before other, lower prionty jobs

X

40

WHAT WERE THE

« M.IT. Instrumentation
Laboratory ("the Lab")

+ Built the Apollo Guidance
and Navigation System;

« 10 seconds after “the
eagle has landed’,

+ NASA rang the lab

« "What were those
alarms?”

« “We're [aunching in 24
hours and we're not going
with alarms.”

+ “We must have an
operational computer!”

1202/1201 ALARMS?

E Th
?s

40

14

MASSIVE DEBUGGING AT M.

The bug: “cycle stealing”

Overload of queue

» computer not getting to certain
computations,

What was slowing things up?
+ |/O system keeps looking for data.

+ The Rendezvous Radar Switch was in the
AUTO position and the computer was

doing /O looking for radar data.

Error in the crew procedures

v+ "Place rendezvous radar switch" to
"AUTO" during descent WRONG!

Why not seen found during simulation?

v The switch was not connected to a real
computer (procedures validation
performed on functional simulation)

Last message before lunar take-off

+ Glenn Lunney (Flight Controller), calmly
told the astronauts...

+ "Please put the Rendezvous Radar Switch
In the Manual position”.

E|Th

15 &

40

ES(?ONS FOR SQA

Bad software can ki»r good hardware
Manuals matter

Test what you fly (and nothing else)
Do your criticality analysis right

+ For descent, rendezvous radar was apparently not-critica
* Rendezvous radar used post ascent, not descent

* Also, even If It falled on ascent, then just launch to lunar orbit and let CM's systems do

the docking.

EITh

i
i
aq

ONE FOOTPRINT IS LONELY...

E|Th

i
i
aq

