SE3910- REAL TIME SYSTEMS

Hardware, Interrupts, and Vicious Dogs

OBJECTIVES

Explain the concept of a cape ——
Understand how to read a basic schematic «—
Explain the concept of a dropping resistor -

Explain the concept of a pull up and a pull down resistor ——

Explain the difference between polling and interrupts

’—-

Explain how an interrupt service routing is handled
e ———————

Explain the concept of a system on a chip

Explain the purpose for & watchdog timer

SE3910 REAL TIME SYSTEMS

o

E.

THE LAB CAPE

-
i EDEII]EIEDEIIDI: EID!I:DEI 46
AR D0 0000000000000 00O0O0O0O0 |45
Al

1

E-E-E [[O-E-E R Qe-E-E R R E-Ee [e
(6 = 3] (€. = g 3] (€ s g 3] -84 @ 3-8
(€ o = 3] (€ n = g 2] (€ o = o 3] -84t O -8
st tEaEndoOEahEe T
aeofdoaendoEaldoen s
GeofleeEfloERd hoERpEe |
B-8-8 B-§-8 B-8-8 G-8-8 E—Hﬁ
sEeEfoEeenpEEnloee e
e E PR R P R ey ey
pEEpoEEEgiEEOnbeEn g a5
GEEfOEEE g EE0 0 688 HEe o
B-8-8 B-8-f B-8-8 B=8-f @ 3-8
EEEf Qa0 0 0 eEa0 0688) 6Ee
B-8-8 B-8-f B-8-f B=8-f O 3-8

(%)) :fgﬁ\lnnnununnnnunnununﬁ 46
! 3@1{1 DDOODDODDOODOODDO M-S |45 ,

Bﬂrﬁ [4},#

SE3910 REAL TIME SYSTEMS I(\;P

THE LAB CAPE

SE3910 REAL TIME SYSTEMS

- .

E; googooooDoQoOoQQooOoQROOQO
1

0
ppopopooooOooOOODOOOOOn

N

T

ikl

o

e

o, |

N
\
\
;
P
)

$EEEEEEEEEEE:
$EEEEEEEEEEEE:
$EEEEEEEEEEE:
$iEEEEEEEEEEE:

ffggz\lﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ-ﬂ 4

DoOoDoDODOODOOOODDODD &8

46
435

ITT

G-

:

[+ 1]
B o
[11]

1

o8 9
B8 5
B o

C
=
157

THE LAB CAPE

-y
L]

Jo0000p0000O0Q000ODOOOOOD
‘mooooooO0p0OoOoQ0OOOOOOOOOOD

.
o

g ' G000 eE-e 00 eee 00 o-ee e
GEB00EEan0eee 0 e-ee e
G800 0 e-8-8 0068800688) oe
G000 E-E-80n0e-ee 0 e-ee e
B-8-8 G- cg- g G808 § B8
G880 0 E-E-8 00 e-ee 0088 e
G-8-8 0 0 688 0 0 688 §) 688) B8
G-8-8 00 E-E-8 0068800688 0 68
G880 0 688 0 0 688 0 0 688 0 68
GEEQ0EEa00oee gl oenfae
GEE g 0EEe 00 Eee g 0660 6o
BEeEtfEEanfoeathoennoe

Q0000000000000 00
googoggoooQ0oopDOoOQOOO

<1

SE3910 REAL TIME SYSTEMS

oard

Breadb

THE LAB CAPE

SE3910 REAL TIME SYSTEMS

0
qooo
qooo
™
(m] il

CooppopooQpoDOoDODODOOOO
coopooOooOoOOoOoOOOOOOODO

$EEEEEEEEEEE:
$EEEEEEEEEEEE:
$EEEEEEEEEEE:
$iEEEEEEEEEEE:

I

Qooo000QO0000Q00000 @8 |4

DoOoDoDODOODOOOODDODD &8

46
435

ITT

G-

:

[+ 1]
B o
[11]

1

o8 9
B8 5
B o

C
=
157

THE LAB CAPE

Fia /8

W [2pooo
ilooo

™

a

Co0opgoOOoOQDODODOODOOOOD
CooogOoOoOoO0OOOOOOOOOOO

HI\\

G-t

o

§2

OV (bete:

$EEEEEEEEEEEE:
$EEEEEEEEEEE:
$iEEEEEEEEEEE:

332

Qooo00DoQO000000000 @8

DoOoDoDODOODOOOODDODD &8

Pin 2.

SE3910 REAL TIME SYSTEMS

46
435

g

eadboard

B8 o
1]

1

=]
G- @
B8
B8 o

48
45

C =
=
|55

LAB CAPE S

2
i GPO1_T
i i GAO1 3
! i TINGE
i |8 TIKRE R
]l i GPON_12
i+ L] MO
Bl % G011
7 T GM0 1
——1] L P
nl Lz GPO1S
a4l | GPIO1_1
S - .
) L | GhOZ
I D O i)
b1l |33 _RTSN
LI M LIARTY RTSM
B ¥ | UARTICTSM
b L | UARTSRXD
e LML GROZT
[l |43 oGP0z N
4 M GO 6
B AN T B N
FEMALE WEADCR 2x23
I}IHHD t}?ﬂll
p2
1 L
A L VDO_IVIEXP
Voo 5y
L1 SYS 5
'] L E'I'EFIEEETH
T PO
i L] mﬁm
A LML EHRPWMIB
B0 IS TN [AT
N R SDA
Fil | 12 #J.‘D
A LML UARTY_TXD
@y Ll LARTY BND
I O T
| B LM
-] AING
b L) M Al
| I AN
[T i oMo0_T
4 m
4 K
FEMALE WEADER 2x23 2
i

08D

TH1 T2
g ¥ 1 [z
4 4
: H b
i
Pl i f_‘ i %’
— & 5] |L_I]_ﬂl_ '_::_L
1 -] _H_|| !
E ol) o
| HEE
: 8 ot
8 m L .
|| R =L
B.PIN HEADER Ly]
THY THd
.l 1 i
i J—'F
e [}
g - % 0
jan s 1| it
|, L] |0y
T T T T
(] TH THT THE Fll i i i:
. ' _ - et et |l
reli=ale seleslsolie & SRS {5 R
_+ 2]t ; L]
;%. .%&% Y
-5
] T % BE i M
10 | M _%_ i i
mleelen]relenlcoREales =
. LN LN
Fi] i !
U, 2, ey
1 i T n | ¥
H b p B e B e B =
18 | 2
: -j‘q Fﬁi— ﬁ- Ca %q i
U e L) e i) LE tﬁ%:.jl- T
TITLE: Proto
Document Number: HE

nMLé D

- /= TR

3.3-2,12= Ty¥472

LAB CAPE

THE SCHEMATIC WE BUILT
WITH THE PULL UP RESISTOR

470 "

i E—
P3
1 470 w
§ W%z nzlq
_$ St
: T
8-PIN HEADER Y T
§2
M
t—
SE3910 REAL TIME SYSTEMS

POLLING VERSUS

INTERRUPTS

* Polled 1O System

* the status of the /O device is checked periodically(reqularly)
_m—

45

Somest 4%
* accessible status and data registers are needed in the hardware side. /

11 t///c,ﬁ]?

* Interrupt Driven —_

* Latency can be made less uncertain without increasing the loading on the CPU

(- Question: How do we manage multiple interrupts?

(— |
79/)“'ﬂ”/.zf,,?« ——//ﬂ@

+ 1O activity is software controlled; only

SE3910 REAL TIME SYSTEMS

INTERRUPT DEFINITIONS

Interrupt 9/)-/-JA/é?/é;ﬂ/ é.f//(,, /..--z/

+ Anevent in hardware that tiggers the processor to jump from its current program counter to a
speciic point in the code.

Interrupt Service Routine (ISR)

* The function that Is called or the paricular assembly code that I1s executed when the interrupt
happens is called the Interrupt Service Routine (ISR).

Interrupt flag (IFG)

* this 1s the bit that 1s set that tniggers the interrupt, leaving the interrupt resets this flag to the
normal state.

Interrupt Enable

+ Control bit that tells the processor that a paricular interrupt should or should not be ignored.

Interrupt Vector Table

+ Atable in memory which maps ISRs to interrupts.

INTERRUPTS -> PART #1 8 %P

ISR HANDLING PROCESS

Q‘Ilﬂrrupt nccurD

/ (:9 514!’#4{;.5

Execute the interrupt jump vector

Complete the current instruction

!

y

Execute the ISR ;F

l

Save the program counter on the
slack,

e ——————

INTERRUPTS -> PART #1

Return to normal program
execution after RETI instruction

Ketvrn

l
GSR Completad> 7‘/:-\),:?
M-/t,; %i i

o [

INTERRUPT HANDLING WITH PIU

’f @«fg/r Lf/7l _JL C_ﬁ

U

/.
Interrupt Request

>

) Interrupt Acknowledge

\J

Time

SE3910 REAL TIME SYSTEMS

Interrupt Vecttr/

—p

Interrupt Vector

\Vector Table

/C ¢ Wlmos7
T L 5K ey

~

Hs

Interrupt Handler's
Address

INTERRUPT SERVICE
ROUTINE HANDLING

/4
* The interrupt-request line 1s activated. = !/“'/ 4"{4,,
* The nterrupt request 18 latched by the CPU hardware((~)}

- , \ — , ,

* The processing of the ongoing instruction 1s completed (<).

The content of program counter register (PCR) 15 pushed tos{ack.
The content of status register (SR) is pushed to stack.

The PCR 1s loaded with the interrupt handler’s address.

—

The interrupt handler 1s executed (~).

_—

The original content of SR 1s popped from stack.
The original content of PCR 1s popped from stack,

——

SE3910 REAL TIME SYSTEMS | ;&

POLLING

"Arc we there yet? Are we there yet? Are we there yet?”

INTERRUPTS -> PART #1

INTERRUPTS

ET
ETH

ET !
3

ET.

L ARE WE THERE YET 1l

I?I AD: “VET) |,|

’ ‘1

*Q 29

Wy)
i VA

INTERRUPTS -> PART #1

¢ THE
% THE

THE RELATIONSHIP BETWEEN
PROCESSOR TECHNOLOGIES

Processor

/

Microprocessor

Microconf/oller

/

T

Standard

crocontroller

]

\
p

N\

Custom
Microcontroller

l

/

computer on

Chip

‘s

SE3910 REAL TIME SYSTEMS

System on
Chip

OF

THE CLEMENTINE

* [n 1994, a deep space probe, the Clementine, was
launched to make observations of the moon and a large

asteroid (1

620 Geographos).

+ After months of operation, a software exception caused a

control thr

uster to fire for 11 min

the remair
RPM.

ites, which depleted most of

ing fuel and caused the probe to rotate at 80

» Control was eventually regained, but it was too late to
successfully complete the mission.

WATCHDOG TIMERS

| .
nu 5 [o8

WHY USE A WATCHDOG

anomalies to be truly robust

an operator.

-+ Manually resetting a device ir

» Embedded systems must be able to cope
with both hardware and software

* In many cases, embedded devices operate
In total isolation and are not accessible to

this scenario

when its software ‘hangs” is not possible.

* |n extreme cases, this can result in
damaged hardware or loss of life and incur

WATCHDOG TIMERS Significant cost impact.

16

ok

* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS |n extreme cases, this can result in 17

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with bot hardware and software

%, embedded devices operate
4tion and are not accessible to

» Manually resetting a device in this scenario
when its software "hangs” is not possible.

WATCHDOG TIMERS |n extreme cases, this can result in 18

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with both hardware and software
be truly ropust

- embedded devices operate
on and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 1°

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with bol.hardware and software

3% embedded devices operate
sgration and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 20

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOG TIMERS |n extreme cases, this can result in 2

P [I R R [AR [A S

WHY USE A WATCHDOG

» Manually resetting a device ir

WHY USE A WATCHDOG

this scer

when its software ‘hangs is not possib

WATCHDOG TIMERS |n extreme cases, this can result in22 (8

* Embedded systems must be able to cope
with bot hardware and software

%, embedded devices operate
4tion and are not accessible to

ario

P [I R R [AR [A S

* Embedded systems must be able to cope
with both hardware and software
be truly ropust

- embedded devices operate
on and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS |n extreme cases, this can result in 23

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with bol.hardware and software

3% embedded devices operate
sgration and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 24

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS |n extreme cases, this can result in 23

P [I R R [AR [A S

WHY USE A WATCHDOG

» Manually resetting a device ir

WHY USE A WATCHDOG

this scer

when its software ‘hangs is not possib

WATCHDOG TIMERS |n extreme cases, this can result in2 (8

* Embedded systems must be able to cope
with bot hardware and software

%, embedded devices operate
4tion and are not accessible to

ario

P [I R R [AR [A S

* Embedded systems must be able to cope
with both hardware and software
be truly ropust

- embedded devices operate
on and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 2/

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with bol.hardware and software

3% embedded devices operate
sgration and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS |n extreme cases, this can result in 28

P [I R R [AR [A S

WHY USE A WATCHDOG

* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 22

P [I R R [AR [A S

WHY USE A WATCHDOG

WATCHDOG TIMER
STRUCTURE

Clear

— 7’ Watchdog Timer

—

Up-Counter

To Interrupt or

System Reset
———

Clock

SE3910 REAL TIME SYSTEMS

C
=
157

