SE3910- REAL TIME SYSTEMS

Hardware, Interrupts, and Vicious Dogs



OBJECTIVES

Explain the concept of a cape ——
Understand how to read a basic schematic «—
Explain the concept of a dropping resistor -

Explain the concept of a pull up and a pull down resistor ——

Explain the difference between polling and interrupts

’—-

Explain how an interrupt service routing is handled
e ———————

Explain the concept of a system on a chip

Explain the purpose for & watchdog timer
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THE SCHEMATIC WE BUILT
WITH THE PULL UP RESISTOR
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POLLING VERSUS

INTERRUPTS

* Polled 1O System

* the status of the /O device is checked periodically(reqularly)
_m—

45

Somest 4%
* accessible status and data registers are needed in the hardware side. /

11 t///c,ﬁ]?

* Interrupt Driven —_

* Latency can be made less uncertain without increasing the loading on the CPU

(- Question: How do we manage multiple interrupts?

(— |
79/ )“'ﬂ”/.zf,,?« ——//ﬂ@

+ 1O activity is software controlled; only
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INTERRUPT DEFINITIONS

Interrupt 9/ )-/-JA/é?/é;ﬂ/ é.f//(,, /..--z/

+ Anevent in hardware that tiggers the processor to jump from its current program counter to a
speciic point in the code.

Interrupt Service Routine (ISR)

* The function that Is called or the paricular assembly code that I1s executed when the interrupt
happens is called the Interrupt Service Routine (ISR).

Interrupt flag (IFG)

* this 1s the bit that 1s set that tniggers the interrupt, leaving the interrupt resets this flag to the
normal state.

Interrupt Enable

+  Control bit that tells the processor that a paricular interrupt should or should not be ignored.

Interrupt Vector Table

+ Atable in memory which maps ISRs to interrupts.

INTERRUPTS -> PART #1 8 %P



ISR HANDLING PROCESS

Q‘Ilﬂrrupt nccurD

/ (:9 514!’#4{;.5

Execute the interrupt jump vector

Complete the current instruction

!

y

Execute the ISR ;F

l

Save the program counter on the
slack,

e ——————

INTERRUPTS -> PART #1

Return to normal program
execution after RETI instruction

Ketvrn

l
GSR Completad> 7‘/:-\),:?
M-/t,; %i i
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INTERRUPT HANDLING WITH PIU

’f @«fg/r Lf/7l _JL C_ﬁ

U

/.
Interrupt Request

>

) Interrupt Acknowledge

\J

Time
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INTERRUPT SERVICE
ROUTINE HANDLING

/4
* The interrupt-request line 1s activated. = !/“'/ 4"{4,,
* The nterrupt request 18 latched by the CPU hardware( (~ )}

- , \ — , ,

* The processing of the ongoing instruction 1s completed (<).

The content of program counter register (PCR) 15 pushed tos{ack.
The content of status register (SR) is pushed to stack.

The PCR 1s loaded with the interrupt handler’s address.

—

The interrupt handler 1s executed (~).

_—

The original content of SR 1s popped from stack.
The original content of PCR 1s popped from stack,

——
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POLLING

"Arc we there yet? Are we there yet? Are we there yet?”

INTERRUPTS -> PART #1



INTERRUPTS
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THE RELATIONSHIP BETWEEN
PROCESSOR TECHNOLOGIES

Processor

/

Microprocessor

Microconf/oller

/

T

Standard

crocontroller

]

\
p

N\

Custom
Microcontroller

l

/

computer on

Chip

‘s
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THE CLEMENTINE

* [n 1994, a deep space probe, the Clementine, was
launched to make observations of the moon and a large

asteroid (1

620 Geographos).

+ After months of operation, a software exception caused a

control thr

uster to fire for 11 min

the remair
RPM.

ites, which depleted most of

ing fuel and caused the probe to rotate at 80

» Control was eventually regained, but it was too late to
successfully complete the mission.

WATCHDOG TIMERS
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WHY USE A WATCHDOG

anomalies to be truly robust

an operator.

-+ Manually resetting a device ir

» Embedded systems must be able to cope
with both hardware and software

* In many cases, embedded devices operate
In total isolation and are not accessible to

this scenario

when its software ‘hangs” is not possible.

* |n extreme cases, this can result in
damaged hardware or loss of life and incur

WATCHDOG TIMERS  Significant cost impact.

16
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* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS  |n extreme cases, this can result in 17
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with bot hardware and software
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* Embedded systems must be able to cope
with both hardware and software
be truly ropust

- embedded devices operate
on and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 1°
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* Embedded systems must be able to cope
with bol.hardware and software

3% embedded devices operate
sgration and are not accessible to

WSS+ Manually resetting a device in this scenario
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* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
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» Manually resetting a device ir

WHY USE A WATCHDOG

this scer

when its software ‘hangs is not possib

WATCHDOG TIMERS  |n extreme cases, this can result in22 (8

* Embedded systems must be able to cope
with bot hardware and software

%, embedded devices operate
4tion and are not accessible to

ario
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» Manually resetting a device ir

WHY USE A WATCHDOG

this scer

when its software ‘hangs is not possib
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* Embedded systems must be able to cope
with both hardware and software
be truly ropust

- embedded devices operate
on and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.

WATCHDOGTIMERS | extreme cases, this can result in 2/
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* Embedded systems must be able to cope
with bol.hardware and software

3% embedded devices operate
sgration and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.
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* Embedded systems must be able to cope
with both hardware and software

dn and are not accessible to

WSS+ Manually resetting a device in this scenario
=~ whenits software ‘hangs” is not possible.
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WATCHDOG TIMER
STRUCTURE

Clear

— 7’ Watchdog Timer

—

Up-Counter

To Interrupt or

System Reset
———

Clock
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