

Addition and Subtraction

Lecture Objectives:

- Explain the relationship between addition and subtraction with twos compliment numbering systems
- Explain the concept of numeric overflow when dealing with twos compliment numbers.
- Explain the concept of an exception.
- Define multiplier and multiplicand.
- 5) Explain the concept of left and right shifting.
- Explain how a computer may use left and right shifting to perform arithmetic multiplication sequentially.
- 7) Explain the advantage of using left or right shifts when multiplying or dividing by a power of 2.
- 8) Explain how hardware can be added to improve multiplication times.
- 9) Compare and contrast the time complexity of multiplication with addition and subtraction.
- 10) Explain how a computer deals with signed multiplication.
- 11) Explain the size relationship between the multiplier, multiplicand, and the product.

- You will be given a sheet of paper with arithmetic problems on it.
- You will have exactly 2 minutes to work as many problems as is possible

How many did you get done?

What type of problem did you solve?

- 4 basic types of problems
 - Simple addition
 - Simple multiplication
 - Complex addition (Floating Point) -
 - Complex multiplication (Floating Point) —

-Not druly conglex

Binary Addition

– Add 7 + 6 as 5 bit numbers

7=> 0 0111

$$6 => 0.0110$$

Add 15 + 14 as 5 bit numbers

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Something wing

- Overflow can generate an exception
 - An unscheduled event (interrupt) that disrupts program execution, used to detect overflow.
- Interrupt
 - An exception that comes from outside of the processor

 Take the number that is to be added and calculate the twos compliment

230) Definitions (Pg

Multiplicand

The first operand of a multiplication operation

Multiplier

- The second operand of a multiplication operation
- Product
 - The final result of a multiplication operation

Basic dofinitions

Multiplication

First approach (Long Multiplication)

1000 Hlck 2 571 00000F1ck 000041ck

Uses multiple adders

Cost/performance tradeoff

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

mans multiplication Poor

• What happens if a number is shifted to the left one bit? $\mathcal{V}_{15/21}$

Doubles the -) multiplies by

 What happens if a number is shifted to the right one bit?

> That the number. Divile by 2

Multiplying signed numbers

2. Multiply them as positive numbers $\not\vdash$

Convert back to the appropriate sign

based on the initial input.

0010=7 1101