

Cache Design

Lecture Objectives:

- 1) Define set associative cache and fully associative cache.
- Compare and contrast the performance of set associative caches, direct mapped caches, and fully associative caches.
- Explain the operation of the LRU replacement scheme.
- Explain the concept of a multi-level cache.
- 5) Explain the three C model for cache.

Least Reconty

- Fully associative cache
 A cache structure in which a block can be // placed in any location in the cache.
- Set-associative cache
 - A cache that has a fixed number of locations (at least two) where a given block can be placed

Direct mapped Set associative designs Set # Data Data Data Comparison of cache Tag Tag Tag Search Search Search

- Working with your partner, solve the following problem
 - The following block accesses occur in memory over three different cache structures. Calculate the miss rate for each cache structure
 - Structure 1: A direct mapped cache of 4 one word blocks
 - Structure 2: A 2 way set associative cache of 4 words
 - Structure 3: A fully associative cache of 4 words.
- Access trace: 1, 9, 1, 7, 9, 7, 9, 1, 7, 3

Direct Mapped Example

Address of memory Access	Hit or miss	0	1	2	3
1"-1	0		*		
— 1 7./ //4 ~9	6		9		
174 1					
7/47	0		K		7
714 9 -07	0		8		
→ 7					
7 9	1				
→ 1	0				
7	-1				
4 8	0	CS27	10 Computer Organization		<i>'3</i>

Hit rate i

Hi15 1,7,1 Acresses

3 - 32,

2 Way Set Associative Example

						1
Address of memory Access	Hit or miss	Set 0	Set 0	Set 1	Set 1	1
/1/2 1	M					1 UKK 1
912 9	M			1	9	
17.2 1	Н					
パ2 ¹ パ2 ¹ 9	M				7	
7/2 29	M			9	7	
-)7	H			·		
€)9	1					
1/2 1	n			9		
7.77	h			7	Ì	
377 3	M		CS2710 Computer Organization	7	6 3	
	HA	\ =	H;15			5
			total A	(1969	5	10

Any data Anghere Fully Associative Example

Address of memory Access	Hit or miss	Block 0	Block 1	Block 2	Block 3
1	M	1			
9	M	İ	9		
1	Ĥ				
7	M	1	9	7	
9	И				
7	H				
9	H				
1	H				
7	Ħ				
3	M	CS2	710 Comput GOrganization	\neg	73

BAND

associativities

Direct mapped lake Associativity Data miss rate

Associativity	Data miss rate
(1)	10.3%
2	8.6%
4	8.3%
8	8.1%

Diminishing Petun

Computer (Vanization

Associativity OE

Direct Mapped?

Nochoile

Set Associative

- Prefer non valid entry if there is among entries in LRV (Least recently Least) the sext one for Affriximately same performance of LK 62710 Capiter Champaich 955001111

- A Cache model in which all cache misses are classified into one of three categories
 - Compulsory Misses

Capacity Misses

Conflict Miss

Source of misses

Compulsory misses not visible (0.006%)

Basic Design challenges

Design Change	Effect on miss rate	Possible negative performance impact
Increase the cache size	Decreases capacity misses	May increase access time
Increase Associativity	Decreases miss rate due to conflict misses	May increase access time
Increase Block Size	Decreases miss rate for a wide range of block sizes due to spatial locality	Increases miss penalty. Very large blocks could increase miss rate.