Notes: Prior to class, instructor will need to obtain a set of power supplies with current measurement from tech support as well as a set of 50 ohm ¼ W resistors and a set of 50 ohm larger resistors as well.

 You will also need a modified SunROM board with interchangeable crystals

Ohms Law and Power

Lecture Objectives:

- Explain the relationship between current, voltage, and resistance (Ohms Law)
- Calculate the power dissipated in a resistor based on voltage and current
- Explain the relationship between clock rate and dissipated power.

- Your instructor will pas out a power supply and a resistor
 - Wire the following circuit (Your instructor will aid you)
 - Starting at 0 V, measure the current as you increase the voltage between 0 and 10 V.
 - Plot the results

In class activity

Voltage	Current	Voltage	Current
.5 V		4V	
1V		5V	
1.5V		6V	
2V		7V	
2.5V		8V	
3V		9V	
3.5V		10V	

In class activity

Voltage	Current	Voltage	Current
.5 V		4V	
1V		5V	
1.5V		6V	
2V		7V	
2.5V		8V	
3V		9V	
3.5V		10V	

$V = I \times R$

V=> Voltage

I=> Current

R=> Resistance

$$W = V \times I$$

$$W = V^2 / R$$

$$V = V \times I$$

$$V$$

W=> Power (Watts)

V=> Voltage

I=> Current

R=> Resistance

- Power is the energy used by an electronic device to do work
 - For computers, it's byproduct is heat.

- Using a modified SunROM board, measure the power used to run the board at 1Mhz, 4 Mhz, and 16 MhZ.
- Sample code for the program is available.

ATMEGA 32 Current versus Crystal Frequency

Power versus Microprocessor Voltage

Power and computers

$Power = CapacitiveLoad \times Voltage^2 \times ClockFrequency$

What will cause power to go up?

Overclocking

- Setting your CPU and memory to run at speeds higher than their official speed grade.
- Intel Core i7 860
 - 2.80GHz out of the box.
 - Overclocked if pushed to a clock speed higher than 2.80GHz
 Neq t

