

CS3844 Operating Systems

Constructing Resource Allocation Graphs

Objectives

- Construct a resource allocation graph.
- List the conditions necessary for a deadlock to occur.

 A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set

Example

- System has 2 disk drives
- $-P_1$ and P_2 each hold one disk drive and each needs another one

Example

semaphores A and B, initialized to 1

Mutual exclusion:

only one process at a time can use a resource

Hold and wait:

 a process holding at least one resource is waiting to acquire additional resources held by other processes

No preemption: \angle

 a resource can be released only voluntarily by the process holding it, after that process has completed its task

Circular wait: 4

- there exists a set $\{P_0, P_1, ..., P_0\}$ of waiting processes such that P_0 is waiting for a resource that is held by P_1, P_1 is waiting for a resource that is held by P_2 , ..., P_{n-1} is waiting for a resource that is held by \overline{P}_n , and P_0 is waiting for a resource that is held by $\overline{P_0}$.

Vertices represent processes and resources


 $P = \{P_1, P_2, ..., P_n\}$, the set consisting of all the processes in the system

 $R = \{R_1, R_2, ..., R_m\}$, the set consisting of all resource types in the system

- request edge directed edge $P_1 \rightarrow R_i$
- assignment edge directed edge $R_j \rightarrow P_i$

Process

Resource Type with 4 instances

 P_i requests instance of R_j

• P_i is holding an instance of R_i

Resource Allocation Example Graph

