SE4831 : Software Quality Assurance

Static Analysis Tools

Dr. Walter W. Schilling, Jr.

Instructor

Introduction to Static Analysis

wa;/ﬂ/
Ty |

Objectives

Understand the difference between static analysis and testing
Define the halting problem

Explain the difference between a false positive and al‘fl_l_sE
negative

Construct a primitive static analysis tool usingﬂgp

Describe the impact of using static analysis tools over time

Compare and contrast sfyle guides and programming
stM 59(

Explain the steps necessary to integrate static analysis into a

development process
— New code %E
— Legacy code l

Introduction to Static Analvsis

What is testing?

* What do you do when you test a program?

T/; ‘“j/jé/fa:fﬂ/.
D"/”’ $ 77 y
Fouse 14, 4.7

Introduction

» Static analysis is the process of evaluating a system or
component based on its form, structure, content, or

um ion [IEEE]
— Does not involve the execution of the progra

— Software inspections are a form of static analysis

* “even well tested code written by experts contains a
surprising number of obvious bugs” [Hovermeyer/Pugh]

* “Java has many language features and APIs which are prone
to misuse.” [Hovermeyer/Pugh]

» Static analysis tQgls “can serve an important role in raising
the awares@ss of develobers-about subtle correctness
Issues. ..

A -

Introduction to Static Analvsis 4

Static Analysis Overview

Similar to a spell checker or grammar checker.
Search through code to detect bug patterns

— error prone coding practices that arise from the use of
erroneous design patterns, misunderstanding of language
semantics, or simple and common mistakes.

Static Analysis tools detect faults _~All Faults /Faults whicl .iyo'/
>

— Not all faults will fail

* 90% of downtime comes from
10% of the faults

Can detect many different

classifications of software faults
— Coding standards violations r___
— Buffer overflows (Viega et all)
— Security vulnerabilities (Livshits and Lam) ==
— Memory leaks (Rai) ==
— Timing anomalies (race conditions, deadlocks, and livelocks) (Artho) ===

ol

Introduction to Static Analysis

Mol v] H/l/$/f S/
St tlcf_ erview (2)
ﬁ{ }4 / / /4!//(:1‘ } 2N
* Required to claim cbmpliance with’MISRA C Standard

* Between 40% and 60% of statically detectable faults
will eventually manifest themselves in the field (QA
Systems)

* Has been shown to reduce software defects by a
factor of six (Xiao and Pham)

* Can remove upwards of 31% of errors (R. Glass)
* Have been shown to have a 92% ROl ;.. (Schilling)
EW: Required by the state of New York for

N S e 5, ﬂ'///"y«

§ﬁ (éﬂ‘/ﬂ /&Y/(a

Static Analysis Overview (3)

* Used in safety critical software development
— Avionics —
— Automotive -
— Rail Transit =

* Secu r|i Analysis
— m security flaws can be caught with static

analysis (McGraw)

e Shown to be cost effective for code reviews.

ol

Static Analysis Overview (4)

Impossible to prove a software program correct in
the general case

— Manifestation of the Halting Problem.

ol

* Most stati alysis tools are unsound'and

incomplete. .—ﬂ / p %

Halting Problem

Define a procedure halts? that takes a
procedure and an input evaluates to #t if the
procedure would terminate on that input, and
to #f if would not terminate.

(define (halts? procedure input) ...)

Static Analysis Problems

» Static analysis tools aim for good, not perfect
— False Positive rate can be very high =

— Greater than 50% for certain tools

* Tools can be influenced by programmer style.

— Tools may need to be “tuned” based on constructs used
4
AL, 7 5 r

Introduction to Static Analvsis

el

Static Analysis Classifications

Lpef/ 2.

* General Purpose Tools 7~ &

Z « L—_General purpose Static Analysis tools are those geared for general
pmental usage Py |

—_Lint, QAC, Polyspace C, JLint, Findbugs 6 I,’ 7 /
* Security Tools Jf ;Jr /ur/ >

— Static Analysis tools targeting security issues within source code

— RATS (Rought Auditing Tool for Security), SPLint, FIawTinde&_?f
* Style Checking Tools

l%
— Audit software code from a stylistic standpoint ensuring consistan
Implementation style

— PMD, Checkstyle

* Teaching Tools
— Developed to help students develop better software

— Safer C Toolkit, Gauntlet

Introduction to Static Analvsis

Introduction to Static Analvsis 12

What is wrong with this code?
(Note: This is C)

cutine{ uint32_t x, uint32_t ok, BOOL wrong)

printf("X has a wvalue of 1.\n");

¥

{
printf("OK has a value of 2.\n" J;

1
2
3
4
B
6
T:
8: if (ok == 2)
E.r
10
11
12

15: printf("You are correct!i\n" J);

Introduction to Static Analvsis

Simple “Home Made” Static Analysis Tool
using Grep

1: void example_routine(uint32_t x, uint32_t ok, BOOL wrong)
2: {
3: if (x =1)
4: {
5: printf{ "X has a value of 1.\n");
6 }
T:
8: if (ok == 2)
o: {
10: printf("OK has a value of 2.\n");
11: ¥
12:
13: if (wrong = FALSE)
14: {
15: printf("You are correct!i\n" J);
16: ¥
17:
18: /* if (commented=TRUE) Even though this code is commented out,
19: the error is still shown. */
.}

% grep "if ([[:space:]l=*[[:alnum:]]*[[:space:]]*=[[:space:]]l*

[[:alnum:]]"gerror_files.c
Code %\: 7~
nNemf .

[ntroduction s

[Eg]

Simple “Home Made” Static Analysis Tool
using Grep

void example_routine(uint32_t x, uint32_t ok, BOOL wrong)
1
if (x=1)
{
printf{ "X has a value of 1.\n");
}

if (ck == 2)
{
printf("OK has a value of 2.\n" J;

(€

{ wgpng = FALSE)

el = B R I

=

¥

N

™~

oS
X

Al
N
N 2

prfatf("You are correct!\n");

' : ¥
18: /* if (commented=TRUE) Even though this code is commented out,
19: the error is still shown. */

20: }

$ grep "if ([l:space:]l=*[[:alnum:]]=*[[:space:]]*=[[:space:]]*
[:alnum:]]" error_files.c

if (x =1)

jf (wrong = FALSE)

/* 1f (commented=TRUE) Even though this code is commented out,
[wws@localhost wws]$

Introduction to Static Analvsis 15

Lint

* One of the oldest and readily available static analysis
tools

— Developed initially by Bell Labs
* Clanguage
* UNIX development
* Now available for Dos, Windows, Linux, OS/2

— Commercial version available from Gimpel Software

* Supports value tracking, MISRA C standard compliance
verification, and Effective C++ Standards

* Analyzes C and C++ code
—+ ALOA metrics tool is available to collect guality metrics from Lint

Ui

tool.
* XML Output readily available ,"

Introduction to Static Analvsis

Co =] &y N s L D

= = w0
= O

el e el e e
No s « TS Y (IS 3 IS Y

(-
m LI] LI] LI] LI] LI] LI] LI] LI] LI]

Sample Buffer Overflow Failure Source
Code (C Language)

typedef unsigned short uintlé t;
vold update average(uintlé t current wvalue);

#define NUMBER OF VALUES TO AVERAGE (1lu)

static uintl6o t data values[NUMBER OF VALUES TO AVERAGE]:;
static uintle t average = 0Ou:;

vold update average(uintl6t t current value)

{
static uintle t array_c:rffset = o s ?)ﬂ (' (.
static uintlé t data sums = }> / p

array offset = ((array_pffset++) % NUMBER OF VALUES TO AVERAGE) ;
data sums —-= data values[array offset]:

data sums += current value;

average = (data sums / NUMBER OF VALUES TO AVERAGE) ;

data values[array offset] = current value;

OF

Introduction to Static Analvsis 1

Sample Buffer Overflow Failure Source
Code (C Language)

- typedefunsigned short uint16_t;
void update_average(uint16_t current_value);

- #define NUMBER_OF_VALUES_TO_AVERAGE (11u)

e A sl ey

- static uint16 _t
data_values[NUMBER_OR_VALUES_TO_AVERAGE];

7 static uint16_t average = 0u;

a:

9. void update_average(uint16_t current_value)

10: {

1. static uint16_t array_offset = Ou;

12: static uint16_t data_sums = 0u;

13:

14 arraml offset = ((array_offset++) % —

BER_OF_VALUES_TO_AVERAGE);

15: data_sums = data_values[array_offset];

16: data_sums += current_value;

17: average = (data_sums /
NUMBER_OF_VALUES_TO_AVERAGE);

18: data_values[array_offset] = curmrent_value;

19:}

Introduction to Static Analyd

Sample Buffer Overflow Failure
Lint Output

——— Module: buffer_overflow.c
array offset = ((array offset++) % NUMBER OF VALUES TO AVERAGE) ;

"k \1ndex{LINT}LINT: buffer overflow.c(l4) Warning 564:
varlable ’array offset’ depends on order of evaluation
[\1ndex {MISRA C}MISRA Rule 46]™

* Fault manifesting itself as a failure depends upon the
compiler’s handling of source code!

— Some compilers may handle code properly.
— Other compilers may cause failure to occur.
— Compiler options may effect behavior.

* Especially true of optimization flags .

Introduction to Static Analvsis 19

Impact of SA over Time

(Dr. Dobbs, June 16, 2006 Code Quality Improvement

Violations/KLOC /)/ ’)‘é //?/’7 S A~

Dec 04Jan-05 Feb- OSMﬂ -05 May-OSJun- . ..4
e 5 B

Introduction t

Polyspace C Verifier

Developed as a result of the Ariane 5 launch failure

— Initially developed as an &_da tool
— Has been extended to analyze C, and C++ programs

— Uses Abstract Interpretation technique /
Suffers from scalability issues = Z 05’ a/

— Only can analyze code 20.to 40.XLOC chunks (Venet and Brat)

— 145 KLOC Sendmail failed after 4 days (Zitser et all)

e .
Detected 87% of buffer overflows seeded in an open source
program (Zitser et all)

— 50% false alarm rate.
#Unable to discriminate between faulty code and patched cnde*

Introduction to Static Analvsis

C Global Surveyor

* Developed by NASA Jet Propulsion Laboratory

— Used to analyze
* Mars Pathfinder software (135 KLOC) =
* Deep Space One Mission (280 KLOC)

— Operated only in Linux
— Supports Distributed Processing
— Can analyze any C code

arrently handle C++.
* Algorithms tuned for Mars programs %(’C‘) o /
A //' 7e --@‘7
Introduction to Static Analvsis 22

JLint

Developed for NASA Ames Research Center
Supports static analysis of Java programs

Consists of 2 C programs el

— AntiC Syntax verifier =
* Checks for Java syntax problems due to C language heritage

— JLInt Java analyzer
* Looks for deadlocks, livelocks, race conditions, and other problems

— Suffers from a high false positive rate.
Has been applied to several large scale NASA projects

and other programs.

Source code is freely available.

Introduction to Static Analvsis

Java Pathfinder

* Software program developed by the Robust Software
Engineering group at NASA Ames Research Center
— Available as an Open Source program on Sourceforge

— Analyzes Java Bytecode for deadlocks, assertion violations,
and other problems with temporal behavior

— Uses a custom Java Virtual Machine to analyze source code

— Allows customized extensionsto the tool to be developed
by software engineers

Introduction to Static Analvsis

KIocWork K7
gl recs A4 |

tatic analysis tool available from KlocWork
Supports the analysis of C, C++ and Java
K7 provides excellent coverage of a range of quality issues that can be
found by static analysis.

— Low False positiverate

Provides
— Defects & Vulnerabilities
— Architecture & Header File Anomalies
— Software Metrics

Supports many different development IDES

— Eclipsem Microsoft Visual Studio, IBM Rational Application Developerm Wind
River Workbench, Gvim, Emacs, Visual SlickEdit, Platform Builder, KDevelop,
Freescale CodeWarrior

Flexible Reporting & Defect Management
— Has builtin report generation which can be customized to meet needs of

developers

Introduction to Static Analvsis 25

SofCheck Inspector

Relatively new tool on the market

Analyzes Java code
— Future developmentswill support Ada, C#, C, and C++ code
Operated by

— Automatically creates assertions (preconditions and postconditions)
characterizing each module.

— Attempts to prove that the entire software system obeys all assertions.

— Attempts to prove the absence of runtime errors, such as buffer overflows,
which are responsible for many Internet security breaches.

Performance

— Averages about 1000 lines per minute, more or less depending on CPU speed,
amount of RAM, and complexity of code.

Introduction to Static Analvsis 26

Adding SA to Development Process

* 1. Develop a coding standard and style guides
e —————

— Style guide is not a necessity to use SA effectively
— There may be multiple style guides

* 2. Automate compliance checking with the
standard

* 3. Add SA Compliance checking to review
process

el

Style Guides
D"“ / ”‘/""UL Ci’rz/?/)'rn |

Provides stylistic gmdance for developing source-code
modules.

* |temsto define include: _/

— Copyright notices

— requisite cnmmenting/ /

— Indentation ‘)
— haming conventions /% /1 7L/) 4 .
— Any other stylisticitems

* (Can raise significant debate amongst software engineers
* Can be automated by providing templates to automatically

format code in conformance with the style guide

— Eclipse, JEdit, CodeWright all support style templates.

Introduction to Static Analvsis

Coding Standard

Defines which coding constructs can and can not be used in a project.
— Should predominantly be enforceable through static analysis methods
— Should include general best practices as well as past experiences within the domain

Example rule:
— “All variables shall be assigned a value before being used in any operation”
— Statically detectable
— (Can be easily understood by a programmer.

Defined deviation procedure
— With every coding standard, there will be a need for an occasional deviation.
— All deviations should be reviewed in a formal setting (peer review, formal review, walkthrough, etc.)

Standards Exist to use as a baseline
— MISRAC
— High Integrity C++

O

Introduction to Static Analvsis

MSOE SDL Material

Tabs should be used as the correct method of indentation.
Tabs should be 4 spaces in width.

Avoid lines longer than 80 characters as these cause problems
on smaller displays and terminals.

Lines that must wrap should be broken only at the following
points:

— After acomma

— Before an operator

— Prefer higher-level breaks over lower-level breaks

— Align the new line with the beginning of the expression at the same
level on the previous line.

— If all else fails, use an indent of 8 spaces.

Introduction to Static Analvsis

MSOE SDL Material (Part 2)

* Two blank lines should be added between:
— Sections of a source file.

— (Class and interface definitions.

* One blank line should be added between:
— Methods.
— Local variables in a method and its first statement.
— Before a block or single-line comment.

— Between logical sections inside a method to improve readability.

* Ablank space should be added between:
— A keyword (such as if, while, for) and its opening parentheses. (Not method names!)
— Comma-separated arguments in a list
— All binary operators (except “”) ; Unary operators should never be separated.
— The expressions in a “for” statement, including the for-each version.

— A typecast and the variable name it affects.

OF

Introduction to Static Analvsis

MISRA Coding Standard

* Comments

Comments shall not be nested

* Functions

Functions with a variable number of arguments shall not be used

Functions shall not call themselves directly or indirectly

Functions shall always have prototype declarations and the prototype shall be visible at both the
function definition and call

For each function parameter the type given and definition shall be identical, and the return type

shall be identical

Introduction to Static Analvsis

SW Development process incorporating
Static Analysis

This software-development process segment incorporates
static analysis

[Design source-code R | Code inspect imphm-nhd uﬁwur-.]

| m ule) Review static-analysis output.

[Peer review design for |
L source-code module y [Archive source code and]

static-analysis tools output into
configuration management system

"'I

[Implement source
€ for module
A J
i Run ﬂﬂﬁc-»unulylil hah“ [Test module]
on source code
A, J
-)
Fix defect
Y y

Schilling and Alam, Embedded Systems Design

Introduction to Static Analvsis

Automate Coding Standard Compliance

Sample flowchart of an automated build script incorporaling stalic analysis

i .
Check compiler version.

Create necessary directory structure.
Check static-analysis tool version.

Abert build if problems are found

Is
static analysis

inhibited?
AI Yes
Is

. . No
static analysis Run static-analysis
inhibited? [tool on link output

~ Yes

[Check out J [:i:dn T;:;:II:E.] [f::l::i.:ar:t:r;:] J

static-analysis file

configuration file

3

[Check out

source-code file J No

Link ml.] I

Build finished

-t L | '
Schilling and Alam, Embedded Systems Design tl.‘j‘ii

Introduction to Static Analvsis 34

Legacy Code Integration

Applying to existing code base can be challenging

Success depends upon
— age of the code
— engineer's programming style
— paradigms used
— Diligence of engineers applying static analysis

Many projects have abandoned SA when the first run of the
tool generates 100,000 or more warnings.

With legacy code, it's often not practical to remove all
statically detectable faults.

el

Introduction to Static Analvsis

Legacy Software Methodology

* Treat each statically detectable fault as a bug fix.

— Each time a fault is removed, there's the possibility of injecting a more
serious fault into the module.

— The worst thing would be to attempt to repair a false-positive that was
statically detected as a fault and inject a failure.

— This must be done diligently, as each Statically Detectable fault could
be a catastronphic failure in the making

* ArianeV

* With legacy code, the most important information to track
isn't necessarily the presence of statically detectable faults,
but the change in the number of faults as revisions are made

to that code.
* Coding standard development follows the same behavior as

that for traditional coding standard development.

Introduction to Static Analvsis

Legacy Software Flowchart

Conceptual flow for analysis of legacy soffware

Code change

s the change
Modify design as necessary. ood or bad?
Update source code to Good
rmwhhﬂngnd features.
Review change
implementation
[E'“'i“"’ static] with technical leads
analysis outputs

(Follow coding-
L standard deviation

process

Schilling and Alam, Embedded Systems Design

Introduction to Static Analvsis

OE

Resources

* |[ntegrate static analysis into a software
development process

— http://www.embedded.com/shared/printableArti
cle.jhtml?articlelD=193500830

e NIST SAMATE - Software Assurance Metrics
And Tool Evaluation Project

— http://samate.nist.gov/index.php/Main Page
* Static Source Code Analysis Tools for C
— http://www.spinroot.com/static/

el

Introduction to Static Analvsis

